
Decision making with inference and learning

methods

by

Matthew William Hoffman

B.S., University of Washington, 2005

a thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in

the faculty of science

(Computer Science)

The University Of British Columbia

(Vancouver)

March 2013

c© Matthew William Hoffman, 2013

Abstract

In this work we consider probabilistic approaches to sequential decision mak-

ing. The ultimate goal is to provide methods by which decision making

problems can be attacked by approaches and algorithms originally built for

probabilistic inference. This in turn allows us to directly apply a wide vari-

ety of popular, practical algorithms to these tasks. In Chapter 1 we provide

an overview of the general problem of sequential decision making and a

broad description of various solution methods. Much of the remaining work

of this thesis then proceeds by relying upon probabilistic reinterpretations

of the decision making process. This strategy of reducing learning problems

to simpler inference tasks has been shown to be very fruitful in much of ma-

chine learning, and we expect similar improvements to arise in the control

and reinforcement learning fields.

The approaches of Chapters 2–3 build upon the framework of [Tous-

saint and Storkey, 2006] in reformulating the solution of Markov decision

processes instead as maximum-likelihood estimation in an equivalent prob-

abilistic model. In Chapter 2 we utilize this framework to construct an Ex-

pectation Maximization algorithm for continuous, linear-Gaussian models

with mixture-of-Gaussian rewards. This approach extends popular linear-

quadratic reward models to a much more general setting. We also show how

to extend this probabilistic framework to continuous time processes. Chap-

ter 3 further builds upon these methods to introduce a Bayesian approach

to policy search using Markov chain Monte Carlo. In Chapter 4 we depart

from the setting of direct policy search and instead consider value function

estimation. In particular we utilize least- squares temporal difference learn-

ii

ing to reduce the problem of value function estimation to a more standard

regression problem. In this chapter we specifically tackle the use of regu-

larization methods in order to encourage sparse solutions. In Chapters 5–6

we consider the task of optimization as a sequential decision problem. In

the first of these chapters we introduce the bandit framework and discuss a

number of variations. Then in Chapter 6 we discuss a related approach to

optimization utilizing Bayesian estimates of the underlying, unknown func-

tion. We finally introduce a novel approach to choose between different

underlying point selection heuristics.

iii

Preface

Much of the work of this thesis, unless otherwise noted, was done under the

supervision of Nando de Freitas and Arnaud Doucet.

The work of Chapter 3 was originally based off a preliminary idea of

Ajay Jasra for applying Markov Chain Monte Carlo to the problem of policy

search. This idea became the technical report [Hoffman et al., 2007b] and

with more improvements was transformed into [Hoffman et al., 2007a]. The

later extensions of this chapter formed the basis for improving upon the

earlier MCMC methods in [Hoffman et al., 2009c] which was joint work

with Hendrik Kück.

We then noticed that we could use these same ideas to attack the problem

of linear-Gaussian control with much more general reward functions, the

ideas for which were used in [Hoffman et al., 2009b] and are what Chapter 2

is based on. The later sections of this chapter are based off work with

Nando de Freitas on extending the earlier maximum-likelihood framework

to semi-Markov control problems in what became [Hoffman and de Freitas,

2011]. Peter Carbonetto also provided a great deal of help on an earlier

presentation of this work [Hoffman et al., 2009a].

In the winter of 2011, I took a leave from UBC to join the SEQUEL group

at INRIA, Lille where I worked with Mohammad Ghavamzadeh, Alessan-

dro Lazaric, and Rémi Munos on problems of sparse approximations to

Least-Squares Temporal Difference methods. There I contributed to work

in [Ghavamzadeh et al., 2011], which does not form part of this thesis. Ulti-

mately the results of this collaboration became [Hoffman et al., 2011b] which

forms the basis of Chapter 4.

iv

The work of Chapter 6 was joint work with Eric Brochu on combining

Bayesian optimization with methods built upon portfolios of experts. The

code for this section was written by Eric, and the portfolio strategy itself

came about through many discussions. I also provided the additional con-

vergence theory. Finally, this earlier work with Eric (and the influence of

the INRIA group) led to further study of bandit approaches. Based on this,

the unpublished work of Chapter 5 resulted from additional investigation of

bandit methods with Bobak Shahriari.

v

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . vi

List of Figures . x

Acknowledgments . xiii

1 Introduction . 1

1.1 Markov decision processes . 4

1.2 Solving the decision problem 7

1.3 Outline of this work and contributions 16

2 Maximum likelihood approaches to solving Markov Deci-

sion Processes . 19

2.1 Infinite mixtures of finite-horizon MDPs 21

2.2 Maximum likelihood policy search via Expectation Maximiza-

tion . 23

2.2.1 The E-step . 27

2.2.2 The M-step . 30

2.3 A mixture of Gaussians model 33

2.4 Experiments . 37

2.4.1 Results on synthetic data 37

vi

2.4.2 Robotic applications 40

2.5 An extension to semi-Markov Decision Processes 43

2.5.1 The E-step . 49

2.5.2 Discrete models with Gamma-distributed time 51

2.6 Chapter summary and conclusions 55

3 Bayesian methods for solving Markov Decision Processes . 57

3.1 A Bayesian interpretation of the MDP problem 58

3.2 Markov Chain Monte Carlo 59

3.3 Reversible jump MCMC for Bayesian policy search 62

3.3.1 Sampling trajectories using reversible jump MCMC . 63

3.3.2 Fixed-dimensional updates 67

3.3.3 Preliminary experiments 68

3.4 Improved inference strategies for reversible jump policy search 71

3.4.1 Utilizing the entire reward sequence 71

3.4.2 Explicit noise variables 76

3.5 Marginal Optimization . 78

3.5.1 Annealing . 79

3.5.2 Clustering . 80

3.6 Experiments . 81

3.6.1 Linear-Gaussian models 81

3.6.2 Particles with force-fields 81

3.7 Chapter summary and conclusions 87

4 Regularized Least Squares Temporal Difference learning

with nested `2 and `1 penalization 89

4.1 Preliminaries . 91

4.2 Regularized LSTD . 95

4.2.1 `2 penalization (L2) 95

4.2.2 `1 penalization (L1) 96

4.2.3 `2 and `2 penalization (L22) 96

4.2.4 `2 and `1 penalization (L21) 97

4.3 Standardizing the data . 98

vii

4.4 Discussion of the different regularization schemes 100

4.5 Experimental results . 102

4.6 Chapter summary and conclusions 107

5 Multi-armed bandits . 108

5.1 The optimal Bayesian solution 111

5.1.1 Modeling the bandit problem as an MDP 113

5.1.2 Computing the Gittins index 116

5.2 Alternative index policies and approximation guarantees . . . 119

5.2.1 UCB . 122

5.2.2 Bayesian Quantile-based UCB 124

5.2.3 Bayesian UCB . 125

5.2.4 Thompson sampling 125

5.3 Empirical results for cumulative regret 127

5.4 Simple regret and pure exploration 128

5.4.1 Best arm identification 130

5.4.2 Racing . 132

5.4.3 A Bayesian approach 133

5.5 Empirical results for simple regret 135

5.6 Chapter summary and conclusions 138

6 Bayesian optimization with acquisition portfolios 140

6.1 Bayesian optimization . 142

6.1.1 Gaussian processes . 143

6.1.2 Acquisition functions 146

6.2 Portfolio strategies . 150

6.2.1 Making decisions with expert advice 150

6.2.2 Bayesian optimization with expert advice 153

6.3 Experiments . 155

6.3.1 Standard test functions 155

6.3.2 Sampled test functions 158

6.3.3 Control of a particle simulation 161

6.4 Convergence behavior . 162

viii

6.4.1 Proof of Theorem 1 164

6.5 Chapter summary and conclusions 169

7 Conclusion . 170

Bibliography . 174

A Derivation of the Gaussian backward-message 187

ix

List of Figures

Figure 1.1 Graphical depiction of an MDP. 6

Figure 2.1 Illustration depicting the problem of policy evaluation as

an infinite mixture of finite horizon MDPs. 24

Figure 2.2 Definition of the transition parameters for a mixture of

Gaussians MDP. 34

Figure 2.3 The forward and backward message recursions for the

mixture of Gaussians MDP. 35

Figure 2.4 The marginal posterior distribution parameterization for

the mixture of Gaussians MDP. 35

Figure 2.5 Convergence results for 100, randomly sampled 1-dimensional

mixture of Gaussians MDPs. 39

Figure 2.6 Convergence results for 20 randomly selected 3-dimensional

mixture of Gaussians MDPs. 40

Figure 2.7 Model of a robot arm “peg-in-hole” task. 42

Figure 2.8 A trace of the optimization process for the 3-jointed robot

arm model. 44

Figure 2.9 Relationship between arrival times, sojourn times, and

the system state in the SMDP model. 45

Figure 2.10 Results on various discrete SMDP models. 54

Figure 3.1 Illustration of the 2-dimensional angular-policy space used

to demonstrate of reversible jump policy search. 70

x

Figure 3.2 Convergence of reversible jump policy search compared

against PEGASUS for the preliminary angular-policy prob-

lem. 72

Figure 3.3 Illustration showing the poor mixing properties that can

occur when only using rewards at the end of a chain. . . . 74

Figure 3.4 Graphical model depicting the use of auxiliary noise vari-

ables. 77

Figure 3.5 Policy parameters sampled from a 2-dimensional linear-

Gaussian MDP with multimodal rewards. 82

Figure 3.6 Example of the particle control problem with force-fields. 83

Figure 3.7 Comparison of Bayesian policy search using the summed

and last-step likelihoods. 85

Figure 3.8 Comparison of Bayesian policy search with PEGASUS on

the repellers model. 86

Figure 3.9 Comparison between the explicit noise variable approach

and the basic MCMC approach on the particle system

model. 87

Figure 4.1 A graphical illustration of the LSTD problem. 94

Figure 4.2 Performance of policy evaluation on a sparse value function.103

Figure 4.3 Performance of policy evaluation on the chain model for

a fixed policy. 105

Figure 4.4 Effect of the number of irrelevant features on the optimal

penalty parameters chosen via cross-validation. 106

Figure 5.1 Comparison of various bandit selection indices on a five-

armed problem. 123

Figure 5.2 Cumulative regret of various index policies for a two-

armed bandit with different reward distributions. 128

Figure 5.3 Cumulative regret of various index policies for a 20-, 100-,

and 1000-armed bandit. 129

Figure 5.4 Simple regret for various bandit strategies with 20 arms. . 136

xi

Figure 5.5 Simple regret for various bandit strategies with 120 arms

of varying degrees of difficulty. 137

Figure 5.6 Simple regret for various bandit strategies with 200 arms. 138

Figure 6.1 Acquisition functions with different values of the explo-

ration parameter ξ. 147

Figure 6.2 Comparison of the three base acquisition functions with

GP-Hedge on three commonly used literature functions. . 157

Figure 6.3 Comparison of different hedging strategies on three com-

monly used literature functions. 159

Figure 6.4 Comparison of the performance of the acquisition ap-

proaches on synthetic functions sampled from a GP prior

with randomly initialized hyperparameters. 160

Figure 6.5 Results of experiments on the repeller control problem. . 163

xii

Acknowledgments

I’d first and foremost like to thank my supervisors, Nando de Freitas and

Arnaud Doucet, for all their time and advice. Nando for his extremely varied

interests and push to try new things; Arnaud for his almost encyclopedic

knowledge of all things Monte Carlo. And the less said about Arnaud’s

going-away parties the better.

A great many thanks go to all my collaborators, whose names certainly

pepper this work and without whom this wouldn’t have been possible. This

goes double for all of the students at UBC with whom I’ve spent many hours

at cruddy local pubs (and a few not so bad), running to catch that last bus

in the rain, or late-night runs to the Village for deadline food. This time

wouldn’t have been the same without you. I’ll take the cowards’ way out

and not name names for fear of leaving anyone out, but you all know who

you are!

Also, a whole heaping of thanks go to my parents for all their help over

the years that I’ve been working towards this. Both for that and for only

occasionally asking me when, exactly, I’d be graduating. The same goes

for my brother, Patrick and his new little addition, Myla—she hasn’t done

much yet, but surely learning my name is help enough.

And finally, saving the best for last, I’d like to thank Tülin for all her

help and support over the years. You’ve certainly done more than your share

in helping me work towards finishing this thing, and more so than anyone

else I couldn’t have done it without you.

xiii

Chapter 1

Introduction

The problem of decision making under uncertainty is pervasive, with many

different applications. Consider, for example, the task of online path plan-

ning. In this setting, a robot must make movements in the world subject to

uncertainty both in its own position as well as the position of various land-

marks around it. Deciding where to move next then depends not only on

the goals of the robot, but also in how the robot can move in order to gain

information about its surroundings. Ultimately, by gaining better informa-

tion about its surroundings the robot may be able to obtain more precise

knowledge that will help it better attain its goals in later steps. See e.g.

the work of [Martinez-Cantin et al., 2007, 2009]. Another great example

of the decision making process is that of low-level motor control. Indus-

trial applications often involve robots which must perform precise motion

tasks, however various movements entail differing levels of uncertainty that

the robotic system must account for; see [Peters and Schaal, 2007, 2008].

Often these tasks can be learned in an offline manner, but the holy-grail of

robotics involves developing robots with the ability to act autonomously and

react appropriately to changes in their environment. Another much cited

and celebrated example of such control is that of learning a controller for

autonomous helicopter flight; see [Ng et al., 2006].

Even problems in computer vision are beginning to rely more heavily on

planning approaches. For example, consider the problem of active vision,

1

i.e. a system which actively decides where to “look” in order to properly

maintain track of an object. If the system is limited—either physically or

computationally—in such a way that it cannot attend to every point in its

visual field, then it must decide where in this field to look [e.g. Bazzani

et al., 2011, Denil et al., 2012]. See also the work of [Ballard and Hayhoe,

2009, Rothkopf and Ballard, 2010] for work on task-based visual saliency,

particularly for the task of online navigation. One can also consider the

“reverse” of planning, i.e. observing another agent and attempting to deduce

their goals. Although this approach need not be directly related to vision,

there is a great deal of literature in cognitive science on the problems of

action understanding and goal inference, see [Ullman et al., 2009]. See also

[Ng and Russell, 2000].

The field of operations research also devotes a great deal of effort to the

design of computational strategies—often based on dynamic programming—

for solving ubiquitous decision making problems. See [Puterman, 1994] for

an extensive introduction to this area; see also [Bellman, 1957]. Applications

abound in finance, including option pricing in computational finance [e.g.

Tsitsiklis and Van Roy, 2001]. More recently, applications in environmen-

tal studies and energy management have received a lot of attention; [e.g.

Crowley and Poole, 2011, Hannah and Dunson, 2011]. Medical applications

are another large consumer of dynamic programming techniques; see [Sauré,

2012]. In fact the scheduling of medical tests may be one of the first big ap-

plications, albeit simple, of decision making processes of this type [Robbins,

1952, Thompson, 1933]. In this setting the goal is to assign treatments to a

sequence of patients in order to maximize the well-being of all incoming pa-

tients. However, the efficacy of each treatment is a priori unknown, and as a

result it is often beneficial to explore the space of possible treatments rather

than purely exploiting the current best, but possibly sub-optimal treatment.

As we will also claim later, many problems of exploration for sequen-

tial optimization can also be seen as decision problems. In fact the online

assignment of treatments to medical patients can be seen as related to an

optimization process, where the goal is to find the best possible treatment.

However, unlike more pure optimization problems, the decision maker is

2

more often interested not just in finding the best treatment, but is instead

interested maximizing the well-being of all patients. We will see later in this

work that it is possible to clarify the distinction between these two settings.

Recently similar approaches have been used to optimize the parameters of

other machine learning algorithms [Snoek et al., 2012]; see also the earlier

work of [Brochu et al., 2007, 2010a] which applied these techniques to the

problem of automating graphics and animation design.

Ultimately, the goal of this work is to propose and develop probabilistic

approaches to the problem of planning under uncertainty. This approach,

which as we will see has already had considerable success for planning in

Markov Decision processes, broadens the scope of solution methods capable

for these problems by allowing the full range of machine learning methods to

be brought to bear. We will begin by introducing Markov decision processes

(MDPs) in the next section we will show in Chapter 2 how to transform

this problem into an alternative probabilistic model and perform maximum

likelihood estimation for the parameters of this model. The result of this

transformation, based on earlier work of [Toussaint and Storkey, 2006], is

that it provides an easy framework to apply existing machine learning and

statistical methods. For example, the mixture-of-Gaussians model that we

introduce in Chapter 2 will be made much simpler to derive based on its

relation to standard hidden Markov models.

While the expectation-maximization (EM) algorithm we derive in Chap-

ter 2 is related to other, more standard, dynamic programming algorithms,

the probabilistic approach we advocate also allows for much more diverse

solution approaches. For example, in Chapter 3 we will introduce a Bayesian

solution method based on Markov chain Monte Carlo (MCMC). This is a

significant departure from standard methods based on dynamic program-

ming and has immediate applications as a way of performing gradient-free

optimization of the associated MDP. However, it also provides interesting

avenues for future research as a way of combining model-based and model-

free methodology, which we will briefly allude to in the conclusion of that

chapter. We will also later show a more sample-efficient Bayesian method

for optimizing similar problems in a gradient-free manner in Chapter 6, an

3

approach which relies on placing a probabilistic model over the space of

parameters being optimized.

Finally, we need not look too far to see other examples of the benefits

obtained by blurring the lines between standard planning approaches and

probabilistic models. The approaches we will discuss in Chapter 4 are based

on a least-squares interpretation of the problem of value function approxi-

mation (which we will introduce in the next section). This insight, originally

noted by [Bradtke and Barto, 1996], opens the floodgate for the multitude

of methods in machine learning based on minimizing sums of squared-errors.

In particular, in this Chapter we will discuss various regularization schemes

in order to induce sparse estimates, and thereby accurately learn the value

function when many, many features are used in its approximation.

1.1 Markov decision processes

Throughout this work we will consider the standard framework of reinforce-

ment learning and planning [Sutton and Barto, 1998] wherein an agent in-

teracts with a stochastic environment by making decisions at discrete times

n. We will model this interaction, unless otherwise noted, as a discrete-time

Markov Decision Process (MDP) [Puterman, 1994] consisting of

• an X -valued state process {Xn}n≥1;

• an A-valued action process {An}n≥1;

• and a real-valued reward process {Rn}n≥1.

In particular, each round of interaction proceeds as follows:

For each round n = 1, 2, . . .

1. the decision maker arrives in state xn ∈ X ;

2. the decision maker chooses an action an ∈ A;

3. the decision maker receives reward rn ∈ R from the environment;

4. the environment transitions to state xn+1.

We will assume that the stochastic processes in question are modeled by

4

• an initial-state distribution with density µ(x1);

• a stationary transition distribution with density f(xn+1|xn, an), con-

ditional on the current state and action;

• and a stationary, stochastic policy with conditional density πθ(an|xn)

parameterized by some real-valued vector θ ∈ Θ ⊆ Rd.

Finally, we will also assume deterministic rewards given by

• a reward function r(xn, an).

We should note here that it is trivial to generalize this model to stochastic

rewards with density g(rn|xn, an), however we will generally assume deter-

ministic rewards for simplicity. A graphical model depicting this process

can be seen in Figure 1.1. Note that the policy model introduced here does

not preclude deterministic policies, which can be encoded as delta masses1.

Finally, we will assume that µ, f , and πθ are densities with respect to a

suitable dominating measure, generally Lebesgue or counting.

In order to ease notation later we will also note that for a fixed policy π

this model induces a Markov process {Zn}n≥1 over the extended state-space

Z = X ×A. We will refer to realizations of this chain as state-action paths,

and write their associated densities as

µθ(z1) = µ(x1)πθ(a1|x1), (1.1)

fθ(zn+1|zn) = f(xn+1|xn, an)πθ(an+1|xn+1). (1.2)

In a slight abuse of notation we will also let πθ(zn) = πθ(an|xn) and r(zn) =

r(xn, an) denote the policy and rewards in terms of “state-action variables”

wherever this usage is made clear from the use of “z” terms. Letting z1:k =

(z1, . . . , zk) denote a k-length state-action trajectory we can also write the

joint density of this path as

pθ(z1:k) = µθ(z1)
k∏

n=2

fθ(zn|zn−1). (1.3)

1Either as Dirac or Kronecker delta functions for continuous or discrete state spaces
respectively.

5

X1 X2
. . . Xn

. . .

A1

R1

A2

R2

An

Rn

Figure 1.1: Graphical depiction of an MDP, where (Xn, An) denote
the random variables associated with states and actions at time
n and Rn = r(Xn, An) is the rewards. Here the shaded square
nodes denote the fact that rewards Rn are deterministic given
their parents.

Given this formulation we can now turn to the question of what it means

for a policy to be “optimal” with respect to this MDP. For some finite k we

can consider the finite-horizon expected reward

Jk(θ) = Eθ
[k∑
n=1

r(Zn)

]

where this expectation is taken with respect to the finite dimensional dis-

tribution pθ(z1:k) defined previously. Alternatively, we can consider the

infinite-horizon average reward, namely

J∞(θ) = lim
k→∞

1

k
Jk(θ).

Finally, given some discount factor γ ∈ (0, 1) we can also introduce the

infinite-horizon discounted reward

Jγ(θ) = Eθ
[∞∑
n=1

γn−1 r(Zn)

]
. (1.4)

6

It is this objective, unless otherwise noted, that we will use for most of

Chapters 2–4. As a result we will often write this simply as J(θ) and leave

γ implied. We will also continue to use this objective in the beginning of

Chapter 5 and then introduce a slightly modified objective known as regret

that is similar to the average reward formulation. We will then use this regret

formulation for the final two chapters and will postpone its introduction until

those chapters.

Note that the choice of objective is somewhat arbitrary and will depend

on the exact goals of the decision maker. The main choice that must be

made is between averaged and discounted rewards. By using a discount fac-

tor γ we are essentially devaluing later rewards: a reward in n steps will be

less valuable by a factor of γn. Instead, under the average reward formula-

tion rewards at all time steps are equally valued. Another justification of

discounted rewards is that eventually the decision maker will have to stop

making decisions at some finite but unknown time. In particular we can

consider that there is some probability 1− γ that the decision process ends

at each step, and otherwise with probability γ it continues. Again, however,

we emphasize that this choice lies in the specification of the decision prob-

lem, whereas in this work we will focus on solving the decision problem once

it has been specified. Further, many of the ideas we will introduce can be

modified to work in either the discounted or averaged reward settings.

1.2 Solving the decision problem

We can now turn to the problem of how to optimize the objective functions

given in the previous section. The decision problems, and the solutions

thereof, that we will focus on in this work can be classified on two major axes.

The first of these axes is that of model-based versus model-free scenarios.

This distinction boils down to whether or not the models µ, f , and r are

known to the learner. The second of these distinctions is based on the

form of parameterization used in learning the policy: whether the policy is

directly parameterized as alluded to in the previous section, or whether it is

indirectly parameterized in terms of a value function. In this section we will

7

provide a brief history of different solution methods that fall along these two

axes.

Many classical approaches to the problem of decision making are model-

based approaches to computing the value function via dynamic program-

ming. Here the “overlapping subproblem” associated with this dynamic

programming approach is that of the value function, i.e. a function which

given some state returns the long-term value of that state. Given some

general policy π we can write the value function as

V π(x) = Eπ
[∞∑
n=1

γn−1 r(Xn, An)

∣∣∣∣X1 = x

]
(1.5)

= Eπ
[
r(X1, A1) + γV π(X2)

∣∣∣∣X1 = x

]
. (1.6)

Here we have shown both the direct definition of this value function as an

infinite sum of rewards, and the recursive definition which defines the value

function in terms of itself. The dynamic programming algorithms we will

introduce first generally use this second definition, also known as Bellman’s

equation [see Bellman, 1957] to define the value function. The key reasoning

behind this definition is that we can use an estimate of the value function in

order to bootstrap towards a better estimate of the value function. In this

vein we will introduce the Bellman operator T π as

T πV (x) = Eπ
[
r(X1, A1) + γV (X2)

∣∣∣∣X1 = x

]
(1.7)

which is defined for any function V (x). We can see then that the value

function V π is a fixed point of this operator, i.e. V π(x) = T πV π(x). This

immediately suggests an iterative procedure wherein we start with some

initial approximation V (0) and successively apply the Bellman operator un-

til convergence. This process will then converge to the unique fixed-point

due to the contraction property of the operator—i.e. that each application

reduces the error of the approximation, again see [Bellman, 1957] and also

[Puterman, 1994]. The computation of this quantity is often known as policy

evaluation.

8

Up to this point we have written the Bellman recursion in its most

general form, however we can ground this by considering finite state spaces.

In this setting, V (i) is actually a vector with dimension given by the size of

the state space and application of the Bellman operator can be written in

vector form as

T πV = rπ + γP πV

for any vector V . Here rπ is a vector of expected immediate rewards for

each state and P π is a matrix representing the transition model, both under

policy π. Note that this type of model is often called tabular due to the

representation of the transition model as a matrix or table. Policy evaluation

would then proceed by repeatedly performing this matrix multiplication

until each entry of the value vector has converged.

Now, the value function V π is useful in order assign to each state a value

for that state, however we are often more concerned with computing the

value of taking an action from any given state. As a result, it is useful to

introduce the function Qπ(x, a) which denotes the value of taking action a

from state x and selecting all further actions by following policy π. This

state-action value function can be written as

Qπ(x, a) = Eπ
[∞∑
n=1

γn−1 r(Xn, An)

∣∣∣∣X1 = x,A1 = a

]
(1.8)

= r(x, a) + γE
[
V π(X2)

∣∣X1 = x,A1 = a
]
.

Here we can see that this computation is quite simple if we already have the

value function V π, as the rewards are a deterministic function of (x, a) and

we then need only compute the expectation of V π as a function of the next

state X ′ conditioned on the given state-action pair. The reason for moving

to the state-action value function is then simple: we can use it to define

a greedy, deterministic policy with respect to the value function, in a step

known as policy improvement :

π′(x) = arg max
a∈A

Qπ(x, a).

9

This procedure can then be iterated, alternating between policy evaluation

in order to determine V π (and hence Qπ) and policy improvement to find π′.

This process is known as policy iteration. Given enough iterations this proce-

dure will converge towards the optimal value function V ∗(x) = maxπ V
π(x)

[Puterman, 1994], and as a result we can obtain the optimal policy that is

greedy with respect to this value function.

One potential drawback to policy iteration, is that each step involves

policy evaluation in order to compute V π, the convergence of which may

only occur in the limit. Alternatively, we can consider a generalized policy

iteration algorithm which instead iterates between

1. a value function update step, which merely improves upon the current

value function approximation;

2. a policy improvement step which improves the policy by making it

greedy with respect to the current value function.

We can see that policy iteration lies inside this more general framework

in that the update step performs policy evaluation until convergence. We

can, however, consider approaches that only apply the Bellman operator a

fixed number of times [see Puterman and Shin, 1978]. At one end of this

spectrum lies the approach of value iteration which only applies the Bellman

update once. We can summarize the update and improvement steps of value

iteration by modifying the Bellman operator as follows

T ∗V (x) = max
a∈A

{
r(x, a) + γE[V (X2)|X1 = x,A1 = a]

}
. (1.9)

Here we can see that the quantity inside the maximum corresponds exactly

to the earlier introduced Bellman operator so long as the policy in question

calls for action a—this corresponds to the update step. The maximization

over a implicitly performs the improvement step. By performing this update

for all x ∈ X we obtain a single step of value iteration. By combining these

two steps we can then consider iteratively computing the fixed point of T ∗,

i.e. starting from some arbitrary value function V (0) we can compute

V (i+1)(x) = T ∗V (i)(x)

10

= max
a∈A

{
r(x, a) + γE[V (i)(X ′)|x, a]

}
.

This approach is known as value iteration and like policy iteration, this

procedure is known to converge to the optimal value function; again see

[Puterman, 1994]. This procedure, can often, although not always, converge

much faster.

We can now note how this relates to the objective function J(θ) in-

troduced earlier. Consider a value function parameterized by some vector

θ. For example in the tabular setting we can consider a vector such that

Vθ(x) = θx is the value of the xth state or Qθ(x, a) = θxa for a matrix

of state-action values. By parameterizing these value functions we are in-

directly parameterizing the policy due to the greedy maximization of this

value. We then can write the objective function as

θ∗ = max
θ
J(θ)

= max
θ

Eθ
[∞∑
n=1

γn−1 r(Zn)

]
= max

θ
Eθ
[
Vθ(X1)

]
.

If the optimal value function V ∗ exactly computes the value function of the

MDP, then θ∗ corresponds to the parameterization of this value function.

Alternatively we can consider approximating this value function, in which

case we must consider the initial-state distribution or some other distribution

under which to trade-off the accuracy of the approximation. The field of

approximate dynamic programming is primarily concerned with the question

of how to approximate these value functions; see [Bertsekas, 1995, Busoniu

et al., 2010] for more extensive coverage of this topic.

The approaches described in the preceding paragraphs are, however, only

applicable when the MDP model is known. When these models are not

known the decision maker is instead faced with the problem of model-free

or reinforcement learning wherein one can only sample from the MDP of

interest. One of the central concepts of reinforcement learning is that of the

temporal difference (TD) error. Consider, for example, a learning algorithm

that has a current estimate of the value function V , with which it can make

11

predictions about future rewards. Next we will consider a decision maker

that is attempting to learn this quantity online, and from state x takes

action a, arriving in state x′. We can see that the quantity r(x, a) + γV (x′)

is a Monte Carlo approximation to the Bellman operator introduced above.

This quantity can then be used to compare the predicted value function to

a one-step approximation to the truth, and update the value function via

V (x)← V (x) + α[r(x, a) + γV (x′)− V (x)]. (1.10)

We can look at this as a stochastic approximation method for computing

the value function, akin to that of [Robbins and Monro, 1951], applied to

the dynamic programming approaches previously introduced. The second

term consists of a learning rate α multiplied by the TD error, i.e. the error

in approximating the value function made by V (x). If actions a are selected

according to some policy π, this value function will converge towards V π,

and is known as TD(0) [Sutton, 1988]. However, unlike the model-based dy-

namic programming methods, the state-based value function is not enough

to update the policy, and one must instead learn a state-action value func-

tion Q(x, a). We must also ensure that all state-action pairs are visited often

enough, i.e. that there is some non-zero probability of seeing every state and

action. The reasoning behind this last requirement is in order to ensure that

the MDP is explored in enough detail so that we can properly compare the

values of different actions.

The simplest way to ensure these requirements is to use an ε-greedy

policy based on the current value function Q(x, a). This means that with

probability ε at every step a random action is taken, and otherwise a greedy

action from Q is selected. We can then consider a strategy which from state

x takes action a, chosen in an ε-greedy manner from Q, transitions to x′ and

finally selects an ε-greedy action a′. We can then introduce the SARSA rule

which updates the value function as

Q(x, a)← Q(x, a) + α[r(x, a) + γQ(x′, a′)−Q(x, a)]. (1.11)

12

Note, the name of this approach comes from the order of data that is ob-

served by the algorithm, i.e. “state, action, reward, state, action”. We can

see that this is an extension of the TD-prediction method to the problem of

policy learning. Further, we can note that this method is on-policy in that

the same policy (ε-greedy in Q) is used both for the update rule and for

exploration. We can, however, extend this method to be off-policy, i.e. one

following a different strategy for exploration, by writing

Q(x, a)← Q(x, a) + α[r(x, a) + γ max
a′′∈A

Q(x′, a′′)−Q(x, a)]. (1.12)

This strategy is known as Q-learning. Note, the difference in these two for-

mulations is merely in the use of the max for Q-learning. The reasoning

behind this off-versus-on policy distinction is that off-policy methods are

able to perform more exploration in a way that may hurt their online per-

formance, but instead allows for more quickly learning the optimal value

function. For an extensive discussion of these methods see the work of [Sut-

ton and Barto, 1998]; see also [Szepesvári, 2010].

As with the approaches of approximate dynamic programming, it is also

possible to use function approximation in the RL setting. These approaches

can sometimes diverge when learned off-policy [Baird, 1995], however see

the work of [Maei et al., 2010, Sutton et al., 2009] for recent approaches

which attempt to surmount this problem. Of particular interest is the use

of linear function approximation in which the value function is approxi-

mated as Vθ(x) = φ(x)T θ for some basis features φ, an approach known as

least-squares TD (LSTD) introduced by [Bradtke and Barto, 1996]. This

approach is particular interesting as it allows us to bring in more common

approximation techniques from supervised learning. This is a topic that we

will return to in more detail in Chapter 4. The work of [Lagoudakis and

Parr, 2002] also extends LSTD to the policy iteration setting. See also the

work of [Engel et al., 2003, 2005, Rasmussen and Kuss, 2004] for extensions

of LSTD to the kernelized setting.

The main criticism of value function methods, however, is still that they

are only indirectly learning the policy. A simple policy does not necessarily

13

translate into an easy to learn value function. Alternatively we can directly

parameterize the policy as in the previous section and attempt to directly

optimize these parameters, a broad approach we will refer to as direct pol-

icy search. A widely used method for optimizing this objective involves

performing stochastic approximation, again as in the classic approach of

[Robbins and Monro, 1951] and following a Monte Carlo estimate of the

gradient ∇J(θ). We can further take advantage of the particular structure

of the MDP objective in writing this gradient. By moving the gradient in-

side the expectation defining J(θ), and approximating the infinite integral

with some large horizon K we arrive at

∇J(θ) =

∫ [K∑
n=1

γn−1 r(zn)
] derivative of log︷ ︸︸ ︷
∇ log pθ(z1:K) pθ(z1:K) dz1:K

=

∫ [K∑
n=1

γn−1 r(zn)
][K∑
n=1

∇ log πθ(zn)
]
pθ(z1:K) dz1:K (1.13)

where the marked term in the first equation is purely due to the derivative

of the log, i.e. the fact that ∇p(x) = ∇ log p(x) p(x). A result of this is that

so long as we can sample from pθ(z1:K), i.e. the generative model of the

MDP, then we can approximate this gradient. This allows one to perform

gradient ascent in either the model-based or model-free scenarios. We should

also note that, as pointed out by [Kappen, 2007], the infinite integral in the

above equation can also be thought of as a “path integral”, a technique more

common in the statistical physics literature.

However, the variance of (1.13) can be quite high, depending on the

magnitude of the summed rewards for each sampled trajectory. We can

now take advantage of the particular structure of this model to reduce the

variance. We can first see that due to the two summations in the above

equation, our gradient computation consists of reward and policy-gradient

components

∇J(θ) =

K∑
n=1

K∑
t=1

Eθ
[
r(Zt)∇ log πθ(Zn)

]
.

14

Intuitively, for t < n the rewards at time t do not depend on state-action

pairs from a later time n, so we would expect these components to average

out to zero in expectation. We can formalize this intuition by way of iterated

expectation and write

Eθ
[
r(Zt)∇ log πθ(Zn)

]
= Eθ

[
r(Zt) Eθ

[
∇ log πθ(Zn)

∣∣Zt]︸ ︷︷ ︸
0

]
= 0.

Here the marked component is the expectation of a score and as a result

this must necessarily be zero. We can then eliminate all these components

where t < n and rewrite the gradient as

∇J(θ) =

∫ [K∑
n=1

∇ log πθ(zn)
K∑
t=n

γt−1r(zn)
]
pθ(z1:K) dz1:K . (1.14)

This results in the REINFORCE algorithm of [Williams, 1992], developed

separately as the GPOMDP algorithm [Baxter and Bartlett, 2001]. It is

possible to further reduce this variance by introducing a constant additive

term or baseline to the reward function, as again the product of this constant

term with the expectation of the gradient will be zero. This constant can

then be chosen to minimize the variance; see [Greensmith et al., 2001] for

more details. We can also greatly speed up convergence of this stochastic

approximation by utilizing second-order gradient information, which in the

policy optimization setting becomes particular easy to evaluate; see the work

of [Peters and Schaal, 2008] for more details. More recently, similar direct

policy approaches have been proposed which rely on associating the expected

reward J(θ) with an equivalent probabilistic model. These probabilistic

models are constructed in such a way that the maximum of J corresponds

to the maximum likelihood estimate of this auxiliary model. We will return

to these methods in Chapters 2–3. In those chapters we will focus on model-

based direct policy search, however we will point out ways in which they can

be used for model-free scenarios.

Finally, we should also mention here the problem of arm selection in k-

armed bandit problems [see Robbins, 1952]. This is a reinforcement learning

15

problem wherein there is no state-space, instead the rewards are stochasti-

cally distributed according to some unknown distribution, conditional on a

finite set of actions. These actions are often called arms in an analogy to

the arms of a slot machine. Ultimately, the goal in the bandit problem is, as

in the rest of this section, that of getting the highest sum of rewards. But

in this setting, in order to obtain high rewards, one must explore the set of

arms in order to gain information about the underlying distribution. If we

assume a prior and likelihood model for the rewards of each action we can

actually treat the problem of selecting actions as an MDP where the state of

this MDP corresponds to the posterior probability distribution of each ac-

tions’ rewards. The landmark work of [Gittins, 1979] describes an optimal

approach to selecting actions based on this MDP formulation. Unfortu-

nately, this procedure can often prove to be quite expensive when planning

far into the future. We will further see that there exist many asymptotically

optimal exploration strategies for bandit problems which rely only on the

current single-step mean and uncertainty for each arm. These approaches

provide an interesting way to study the tradeoff between exploration and

exploitation, wherein it is possible to approximate the asymptotically op-

timal policy by being greedy with respect to some other “value function”.

We will return to this question in Chapters 5–6. We should also note that

these approaches are somewhat related to the techniques of Bayesian rein-

forcement learning [e.g., Poupart et al., 2006], however the lack of an actual

state-space obviates many of the difficulties encountered in Bayesian RL.

1.3 Outline of this work and contributions

In the first part of this work we will consider a probabilistic extension of the

direct policy search methods briefly alluded to in the previous section. In

Chapter 2 we will first introduce a view of the MDP problem as one of in-

ference in an infinite mixture of finite-horizon MDPs and then introduce an

Expectation Maximization algorithm for finding the maximum likelihood

parameters in this model. We will then use this procedure to develop a

linear-Gaussian controller with mixture-of-Gaussians reward models. This

16

acts as an extension of the popular linear-Quadratic controller—i.e. the most

popular industrial controller—to the setting of general reward models. We

will also show how to extend the probabilistic interpretation to that of con-

tinuous time, semi-Markov decision processes. This first chapter is based off

work previously published in [Hoffman and de Freitas, 2011, Hoffman et al.,

2009b].

In Chapter 3 we then consider Bayesian approaches to the problem of

policy search by extending the models of Chapter 2. The simplest approach

would be to introduce a prior or regularizer term to the maximum-likelihood

chapters of this earlier chapter. Instead we present what was at the time the

first sample-based approach to this problem which produces samples from

the “posterior” of the underlying probabilistic model. We present initial

algorithms implementing this approach and present initial results demon-

strating their effectiveness. In order to apply this approach to more general

models, however, we present a number of extensions which greatly improve

the mixing time of the Markov chain Monte Carlo (MCMC) algorithms

used within this procedure. This chapter is based on work of [Hoffman

et al., 2007a, 2009c]. See also the discussion with Kück et al. [2009] on using

similar approaches for active sensing and experimental design.

Chapter 4 returns to the problem of value function approximation in

an RL setting, and specifically the LSTD approach mentioned earlier. In

particular this chapter discussions various regularization approaches that

can be applied to this problem in order to encourage sparsity, i.e. the strict

selection of only a subset of features. In this chapter an approach based on

a mixture of `2 and `1 penalties is introduced. This allows one to attack

the problem of value function approximation when the number of samples

n is much greater than the number of features k. This chapter is based on

work of [Hoffman et al., 2011b]; although not discussed, see also work with

Ghavamzadeh et al. [2011] analyzing the finite-sample behavior of a related

`1 penalized approach to LSTD.

In Chapter 5 we provide an overview and literature review of multi-armed

bandit problems. This serves as an introduction to some of the concepts we

will use later in Chapter 6 and serves as a bridge between the approaches

17

of policy learning and Bayesian optimization. We also provide a number

of empirical comparisons between various bandit procedures both in terms

of cumulative and simple regret. We also note a number of mildly novel

observations based on the performance of these methods on different problem

formulations.

Finally, in Chapter 6 we discuss problems of Bayesian optimization, i.e.

sequential function optimization in the black-box setting where a posterior

over function values is used to drive exploration. In this chapter we note

the similarities between Bayesian optimization and the related bandit ap-

proaches of the previous chapter. We further proceed to introduce a novel

meta-strategy for choosing between Bayesian acquisition strategies. We then

show state-of-the-art performance on a number of test problems and high-

light the meta-algorithm’s ability to correctly choose between various base

strategies where it would be otherwise very difficult for even an expert de-

signer to choose appropriately. This chapter is based on work of [Hoffman

et al., 2011a].

18

Chapter 2

Maximum likelihood

approaches to solving

Markov Decision Processes

In this chapter, we consider the general case of Gaussian mixture reward

functions and derive EM updates for this setting. We show that the re-

sulting algorithm outperforms widely used policy gradient approaches. At

the heart of our philosophy is the goal of harnessing the power of analyti-

cal calculations in conjunction with approximation methods. This strategy

has been shown to be very fruitful in inference tasks, and we expect similar

improvements to arise in the control and reinforcement learning fields.

Our approach follows from the formulation of [Toussaint and Storkey,

2006] which casts the stochastic control problem instead as one of param-

eter estimation in a suitable artificial statistical model. From there the

authors solve the parameter estimation problem using the Expectation-

Maximization (EM) algorithm. The general idea of using inference to solve

decision problems appears to have originated in the early work of [Shachter,

1988] on influence diagrams. More closely related to the approach we take

in this chapter is the use of EM in [Dayan and Hinton, 1997], however this

earlier work only considers the simpler problem of optimizing for immedi-

ate rewards. Similar formulations have since been applied to operational

19

space control [e.g., Peters and Schaal, 2007] and in the sequential setting

it has been studied by [Attias, 2003, Verma and Rao, 2006]. Perhaps the

most complete and clear formulation is the one of [Toussaint et al., 2006],

which presents impressive results for finite state space models, although the

authors only consider a single Gaussian reward function.

In this chapter we focus primarily on algorithmic concerns, however we

note that these techniques have since enjoyed substantial success in the field

of robotics [Kober and Peters, 2008, Peters and Schaal, 2007, Vijayaku-

mar et al., 2009]. A significant body of empirical evidence in these papers

also indicates that these methods can often outperform traditional stochas-

tic planning and control methods, as well as more recent policy gradient

schemes. The inference duality first noted by Kalman has also been ex-

tended recently to more general transition models under the assumption of

a very specific form of reward function [see Kappen, 2007, Todorov, 2008].

This work, however, applies mainly to planning domains and may be seen

as a specific case of the EM approach. A more general formulation without

these earlier reward assumptions was recently proposed by [Rawlik et al.,

2012] which clarifies the relationship between these two approaches.

In Section 2.1 of this chapter we introduce the basic formulation of a se-

quential decision problem as one of statistical inference and outline an EM

algorithm for estimating the policy parameters while analytically marginaliz-

ing over the states and actions. In Section 2.3 a novel algorithm is introduced

using the EM procedure to solve linear MDPs with arbitrary rewards, ap-

proximated with mixtures of Gaussians—in other words this extends meth-

ods based on linear controllers (i.e. LQR, LQG) to arbitrary reward models.

We then proceed in Section 2.4 to demonstrate how well the new algorithm

performs on synthetic (but hard) MDPs. We then introduce a motivating

robotics example that shows how to map a nonlinear control problem to a

linear control problem and transform the reward into one amenable to this

approach. Hence, if we can solve linear MDPs with arbitrary rewards, we

can attack a large class of difficult nonlinear control problems. Finally, in

Section 2.5 we show how to extend this approach to semi-Markov decision

processes with continuous time.

20

2.1 Infinite mixtures of finite-horizon MDPs

By examining Eq. (1.4), we can note that the use of a discount factor γ is

very similar to modeling the path length as a geometric random variable K,

distributed according to

p(k) = (1− γ)γk−1. (2.1)

In fact this is one of the original justifications for the use of a discount factor,

namely that the “world might end” at any time step with probability 1− γ.

For reasons that will become clear later, we will also refer to this quantity

as the time prior. Using this intuition we can write the joint density of both

paths and path lengths as

pθ(k, z1:k) = (1− γ)γk−1 pθ(z1:k|k), (2.2)

where we will refer to this quantity as the path prior with pθ(z1:k|k) =

pθ(z1:k) denoting the k-length path prior. We should note now that this joint

defines a trans-dimensional distribution over the space
⋃∞
k=1({k}×Zk), i.e.

a distribution where the dimensionality of the distribution (K in this case)

is also a random variable.

Given that we have shown how to incorporate the discount factor into

the probabilistic model of an MDP we will now take this one step further

and incorporate the immediate reward function r(z). In particular, following

the notation of [Toussaint and Storkey, 2006], we will introduce a “dummy

variable” R with the following conditional probability

p(R = 1|k, zk) = r(zk). (2.3)

Note that this is the likelihood of our “observation” R and as a result it

need not integrate to one with respect to zk. Due to the interpretation of

r(z) as the probability associated with observing R, however, this formula-

tion does require that r(z) be positive in order to ensure that the density is

well defined. We will later show how to ease this restriction in some situa-

21

tions. Now, by combining the probability (2.3) with the path prior (2.2) and

marginalizing over (k, z1:k) we can write the marginal likelihood of observing

R = 1 as

pθ(R = 1) =
∞∑
k=1

∫
pθ(k, z1:k) p(R = 1|k, zk) dz1:k. (2.4)

As the following proposition will show, we can directly relate this quantity

to the expected reward J(θ).

Proposition 1 (Toussaint et al. 2006). The objective function J(θ) is pro-

portional to the marginal likelihood defined in (2.4). More precisely,

J(θ) = (1− γ)−1 pθ(R = 1). (2.5)

Proof. By rescaling the expected reward (1.4) by (1 − γ) and exchanging

the order of integration and summation we can write

(1− γ)J(θ) = (1− γ)Eθ
[∞∑
k=1

γk−1 r(zk)

]

= (1− γ)

∫ [
µθ(z1)

∞∏
n=2

fθ(zn|zn−1)

][∞∑
k=1

γk−1 r(zk)

]
dz0:∞,

=
∞∑
k=1

∫
(1− γ) γk−1 pθ(z1:k|k) r(zk) dz1:k

= pθ(R = 1).

As a result the optimal policy parameters correspond exactly to the max-

imum likelihood estimate of θ in this statistical model given observations

R = 1, i.e. θ∗ = arg maxθ pθ(R = 1). It is this problem that we will focus

on in the rest of this chapter.

A graphical illustration of the full mixture model is shown in Figure 2.1

and at this point we should comment on the interpretation of this prob-

abilistic model. We can think of the reward likelihood p(R = 1|k, zk) as

equivalent to the emission probability in a state-space model (SSM)—e.g.

22

hidden Markov models (HMMs) or linear dynamical systems (LDSs). In

other words, given a path of length k which ends in the extended-state zk

this quantity gives the probability of observing R = 1. By this same to-

ken, we can think think of path instantiations (k, z1:k) as equivalent to the

hidden states of a standard SSM. This model, however, differs from the

standard formulation in two key regards. The first of these differences is

simple, namely that there is only one observation R = 1 made at the end

of the latent trajectory. One benefit of this formulation is that the reward

“likelihood” is only evaluated at time K, i.e. we need only compute obser-

vation likelihoods that occur at the last time step. This representation will

prove particularly useful later when performing inference as we will only

need to evaluate this likelihood at the end of the chain and then propagate

this backwards in time.

The second key difference with standard SSMs is that both the latent

trajectory as well as the length of this trajectory are hidden. Here the dis-

count factor γ induces a distribution which mixes over finite-horizon MDPs

whose stopping time is given by the random variable K. This final differ-

ence causes no immediate difficulties in working with the resulting marginal

likelihood, however we must keep in mind that the expectation in (2.4) is

now integrating with respect to a varying number of random variables.

Finally, we should also note that the actual value of the observation R =

1 is completely arbitrary. We can see from the proof of Proposition 1 that

the only important detail concerning this observation is that the probability

of observing R = 1 conditioned on a path terminating in the extended-state

zk must be equal to the rewards r(zk). As a result in the rest of this work

we will leave the actual value of the observation implicit and write instead

p(R|k, zk).

2.2 Maximum likelihood policy search via
Expectation Maximization

In the previous section we introduced an alternative probabilistic model

such that the maximum likelihood estimate of the policy parameters co-

23

X1

A1

X2

A2

. . . XK

AK

K

R

Figure 2.1: Graphical model depicting the problem of policy opti-
mization as inference in an infinite mixture of finite-horizon
MDPs. Here the random variable K denotes the random hori-
zon, Zn = (Xn, An) the path components conditioned on this
length, and R is a dummy observation whose likelihood is given
by the reward p(R|K,ZK) = r(ZK).

incides with the optimal policy parameters. In this section we will build

on this reformulation by discussing an alternative method of optimizing the

MDP objective function. Specifically, we will make use of methods originally

developed for maximum likelihood parameter estimation.

Given a particular instantiation of the latent trajectory (k, z1:k) we will

write the complete data likelihood of the parameters θ as

L(θ|k, z1:k, R) , pθ(k, z1:k, R) = pθ(k, z1:k) p(R|k, zk). (2.6)

This likelihood function is “complete” since it depends on both the observed

and unobserved variables. We should emphasize, however, that the “data”

in this complete likelihood corresponds only to the dummy observation of

R = 1. Also note that we will write the likelihood in the form L(θ| · · ·) in

order to emphasize that this is a function of θ. We do not, however, want

to optimize the parameters θ for any one particular trajectory. Instead, as

noted earlier, we will treat the random variables (K,Z1:K) as hidden and

instead optimize the marginal or incomplete data likelihood which we repeat

24

below as

L(θ|R) , pθ(R) =
∞∑
k=1

∫
pθ(k, z1:k) p(R|k, zk) dz1:k. (2.7)

Note that we have now integrated out all sources of randomness, i.e. the

latent variables, and we want to optimize this quantity as a function of θ in

order to find the parameters that make our observations most likely.

Directly optimizing this quantity is problematic, however. The joint

distribution, pθ(k, z1:k) does not factorize over the individual states so we

cannot treat this as an independent product of the individual zn. Further,

consider the integral in (2.7). For k-length paths containing M discrete

state-action pairs this integral would result in a summation over Mk terms,

i.e. this summation is exponential in the length of the path. In order to

avoid this computationally complex scenario we must instead find another

way to maximize the incomplete likelihood. In the rest of this chapter we

will do so by making use of an Expectation Maximization procedure which

we will introduce shortly.

In order to discuss optimizing the incomplete data likelihood we will

first introduce the path posterior, i.e. the posterior distribution of our latent

variables given our observations

pθ(k, z1:k|R) =
pθ(k, z1:k) p(R|k, zk)

pθ(R)
. (2.8)

For a fixed θ this quantity represents the distribution over the latent trajec-

tory (K,Z1:K) conditioned on the dummy observation R. We can also note

that the numerator of this distribution is given by the complete data likeli-

hood and its normalizing constant given by the incomplete data likelihood.

We can now introduce an EM algorithm for optimizing the incomplete data

likelihood. The notation necessary to the describe this procedure can be

summarized as

complete data likelihood: L(θ|k, z1:k, R) = pθ(k, z1:k, R),

incomplete data likelihood: L(θ|R) = pθ(R),

25

posterior distribution: pθ(k, z1:k|R).

The algorithm is an iterative procedure that starts from some initial point

θ′ in parameter space and in the E-step constructs the posterior distribution

over the latents given this setting of parameters. This distribution can then

be used to compute the expected log of the complete data likelihood as a

function of θ, i.e.

Q(θ, θ′) = Eθ′
[
L(θ|K,Z1:K , R)

∣∣R].
The M-step then involves maximizingQ(θ, θ′) with respect to θ. This process

is then repeated until convergence, setting θ′ to the parameter estimate

obtained at the last iteration. It is well known that this iterative technique

is guaranteed to produce a local maximum of the incomplete data likelihood

[see e.g. Dempster et al., 1977, McLachlan and Krishnan, 1997].

In order to compute this quantity we will first expand the complete data

likelihood from (2.6) as

pθ(k, z1:k, R) = p(k)µ(x1)πθ(a1|x1)[k∏
n=2

f(xn|xn−1, an−1)πθ(an|xn)

]
p(R|k, zk)

from which we can see that if we collect and treat as constant all terms not

depending on θ that this is proportional to
∏k
n=1 πθ(zn). Now, taking the

logarithm of this quantity and plugging it into the Q(θ, θ′) we can write

Q(θ, θ′) =
∞∑
k=1

∫
pθ′(k, z1:k|R) log pθ(k, z1:k, R) dz1:k

=
∞∑
k=1

∫
pθ′(k, z1:k|R)

[k∑
n=1

log πθ(zn)

]
+ const.

=
∞∑
k=1

pθ′(k|R)

k∑
n=1

∫
pθ′(zn|k,R) log πθ(zn) dzn + const. (2.9)

where we have ignored additive constants not depending on θ. In the follow-

26

ing two sub-sections will describe the resulting E-step needed to construct

these posterior distributions and the M-step which will maximize this quan-

tity with respect to θ.

2.2.1 The E-step

In the E-step we will construct the distributions necessary to evaluate the

Q-function, ignoring additive constants. By referring to (2.9) we can see

that the distributions pθ(k|R) and pθ(zn|k,R) must be computed using the

parameter estimates from a previous iteration. Given a fixed k we now

seek to efficiently compute the marginal over zn, for which we will use an

approach similar to the well-known forward-backward algorithm for Hidden

Markov Models (HMMs) and Linear Dynamical Systems (LDSs). We will

then show that we can easily obtain the posterior distribution of times k

given these quantities.

Our first step will be to introduce forward messages, which in tradi-

tional expositions of the forward-backward algorithm are used to represent

the marginal distribution over zn given all observations that occurred before

time n. In our case, observations only occur at the end of a k-length trajec-

tory so we can write this quantity simply as pθ(zn|k) for any n ≤ k. Note

however, that this quantity can be obtained from the path prior pθ(z1:k|k)

by first integrating out zn+1:k. As a result, we can easily see that this density

does not directly depend on k, or rather that p(z1:n|k) has the same density

for any k so long as n ≤ k. As a result we can drop the dependence on the

horizon k and write

αn(zn) = pθ(zn) =

∫
µθ(z1)

n∏
j=2

fθ(zj |zj−1) dz1:n−1

=

∫
αn−1(zn−1) fθ(zn|zn−1) dzn−1. (2.10)

We can also see from the first line of this formulation that messages are

initialized with the initial-state distribution, α1(z1) = µθ(z1).

Next, we will introduce backward messages, which again we can note are

27

traditionally used to denote the probability of all observations from time n+1

onwards given the latent variable zn. Unlike in the HMM setting, however,

we will take advantage of the fact that our model has only one observation at

the last time step. Instead we will introduce messages βτ (zn) which denote

the probability of making observation R in τ time steps starting from the

state-action pair zn. This quantity can be written recursively as

βτ (zn) = pθ(R|k = n+ τ, zn)

=

∫
r(zn+τ)

n+τ−1∏
j=n

fθ(zj+1|zj) dzn+1:n+τ

=

∫
βτ−1(zn+1) fθ(zn+1|zn) dzn+1. (2.11)

We can also easily see from the first line that these messages are initialized

with the immediate reward, β0(zk) = p(R|k, zk) = r(zk). This decompo-

sition is useful because it decouples the the backward messages from the

path length k. Rather than having to compute this quantity for the tuple

of values (n, k), we need only compute this message as a function of a single

quantity, the time-to-go τ . As a result, unlike in an HMM-context the for-

ward and backward messages can be computed independently of each other.

This was first observed by [Toussaint et al., 2006], and allows us to compute

these distributions in parallel using a single pass for each message.

The messages introduced above now provide us with an efficient means

of calculating the distributions required for the E-step. We can see that the

product of forward and backward messages gives us the following density

pθ(zn|R, k) =
pθ(zn, R|k)

pθ(R|k)
∝ pθ(zn|k) pθ(R|k, zn)

= αn(zn)βk−n(zn). (2.12)

Note that the normalizing constant pθ(R|k) is independent of n and can be

obtained by integrating (2.12) with respect to any zn. We can then compute

28

the time posterior using Bayes rule, i.e.

pθ(k|R) ∝ pθ(R|k) p(k). (2.13)

Corollary 1 (Toussaint et al. 2006). The k-step reward is given by inte-

grating the product of forward and backward messages for any n and the

infinite-horizon reward is given by the expectation of this quantity with re-

spect to k, i.e.

Eθ[r(Zk)|k] = pθ(R|k) =

∫
αn(z)βk−n(z) dz (2.14)

Eθ[r(ZK)] = pθ(R) =
∞∑
k=1

p(k)Eθ[r(Zk)|k]. (2.15)

A Monte Carlo E-step

At this point we should also note, that it is also possible to perform a Monte

Carlo approximation during the E-step in order to optimize these problems

when either the necessary distributions are unknown or the updates cannot

be computed in closed form. As noted in [Vlassis and Toussaint, 2009], we

can sample from the initial-state and transition distributions in order to

approximate the Q-function. Given M trajectories {z(i)
1:k}i≤M sampled from

pθ(z1:k) we can approximate the n-step distribution for any n < k with

p̃θ′(zn|k) ≈ 1

pθ(R|k)
· 1

M

M∑
i=1

r(z
(i)
k) δ

z
(i)
n

(zn),

where the normalizing constant pθ(R|k) can be approximating by summing

over the k-step rewards. If we assume some maximum time-horizon Kmax

we can approximate the Q-function as

Q(θ, θ′) ≈ 1

M

M∑
i=1

Kmax∑
k=1

k∑
n=1

p(k) r(z
(i)
k) log πθ(z

(i)
n)

29

=
1

M

M∑
i=1

Kmax∑
n=1

log πθ(z
(i)
n)

Kmax∑
k=n

p(k) r(z
(i)
k).

This function can then be optimized using the same techniques as in the

standard M-step. We also note that the noise in this approximation can be

reduced by using a reward model which utilizes trajectories of rewards rather

than just the reward at the end of the k-length chain. We will return to this

later in Section 3.4.1, however this was independently noted by [Vlassis and

Toussaint, 2009].

2.2.2 The M-step

The M-step requires us to maximize the Q-function with respect to the pol-

icy parameters θ. If possible we can analytically maximize this function by

solving for the fixed point of ∇θQ(θ, θ′) = 0. If this is not possible we can

still evaluate the gradient at the current set of policy parameters ∇θQ(θ′, θ′)

and follow the resulting ascent direction, resulting in a generalized EM algo-

rithm (GEM). When this procedure is iterated, both of these methods are

known to locally maximize the incomplete data likelihood [again, for more

details see McLachlan and Krishnan, 1997].

A related approach involves calculating the “step” that the standard EM

algorithm would take, i.e.

∇̃Q(θ, θ′) = (arg max
θ

Q(θ, θ′))− θ′ (2.16)

and using this value as if it were a gradient. Such an approach was suggested

by [Jamshidian and Jennrich, 1993] wherein it was used in the context of

a conjugate gradient method; see also the work of [Lange, 1995] who uses

a quasi-Newton to speed up this procedure. Finally, although the term in

Equation (2.16) is referred to as a generalized-gradient in the cited literature,

we will instead refer to it as a pseudo-gradient so as not to confuse it with

generalized EM. We will illustrate both the GEM and the pseudo-gradient

methods later in Section 2.4.

It is also possible to make a direct connection between EM-based algo-

30

rithms and the policy gradient, ∇θ J(θ). By rearranging terms we can write

the Q-function’s gradient as

∇θQ(θ, θ′) =

∞∑
k=1

∫
pθ′(k, z1:k|R)∇θ log pθ(k, z1:k, R) dz1:k

=

∞∑
k=1

∫
pθ′(k, z1:k) r(zk)

pθ′(R)
· ∇θ pθ(k, z1:k)

pθ(k, z1:k)
dz1:k

and by evaluating this gradient at θ′, we obtain

∇θQ(θ′, θ′) =
1

pθ′(R)

∫
∇θ pθ′(k, z1:k) r(zk) dz1:k

=
1

pθ′(R)
(1− γ)∇θ J(θ′),

where the second line follows directly from Equation (2.5). This equivalence

is not entirely surprising in light of Proposition 1. However, the derivation

is surprisingly clean and allows us to map directly between EM approaches

and standard policy gradient approaches. Additionally, it does verify for us

that a GEM algorithm as introduced above computes a gradient in exactly

the same direction as the policy gradient.

Further, while EM methods are, in general, only able to guarantee lo-

cal convergence it can be shown via its relation to policy iteration that

these methods exhibit global convergence for discrete models when using

exact/analytic inference (see the work of [Toussaint et al., 2006] for more

details). In more general continuous settings no such guarantees can be

made, however as we will see in later results, a sufficiently exploratory ini-

tial policy does seem to have a tempering effect. This is especially true if

the exact EM updates can be used, as additional exploratory noise does

not cause the dramatic increase in variance associated with sample-based

methods (such as policy gradients).

Ultimately, the methods used to optimize the EM objective boil down

to computing the gradient of Q. By combining the forward and backward

31

messages from the previous section with (2.9) we can write this gradient as

∇θQ(θ, θ′) =

∞∑
k=1

pθ′(k|R)

k∑
n=1

∫
pθ′(zn|k,R)∇θ log πθ(zn) dzn

=

∞∑
k=1

pθ′(R|k) p(k)

pθ′(R)

k∑
n=1

∫
αn(zn)βk−n(zn)

pθ′(R|k)
∇θ log πθ(zn) dzn

=
1

pθ′(R)

∞∑
k=1

p(k)
k∑

n=1

∫
αn(zn)βk−n(zn)∇θ log πθ(zn) dzn

(2.17)

As a result, in order to compute this gradient we need only compute the in-

tegral of the log policy with respect to the product of forward and backward

messages. This also provides some intuition as to how to extend this ap-

proach to negative rewards. Obviously the forward messages will be a proper

positive density, but in allowing for negative rewards it is possible that the

backward messages correspond to a density term with respect to an under-

lying negative measures. We can account for this, however, by breaking the

βτ (z) term into positive and negative components. This idea is similar in

spirit to the Hahn-Jordan decomposition of signed measures; see the work

of [Poyiadjis et al., 2005] for an example of using signed measures for es-

timating the gradient of a general state-space model. We will also see an

example of this in the next section when dealing with mixture-of-Gaussian

rewards.

We can also see from (2.17) that in general the computational complexity

of computing this gradient is O(k2
max) per iteration for some maximum time-

horizon kmax. In the discrete, tabular case this complexity can be reduced

to linear time as noted by [Toussaint and Storkey, 2006]; we will provide

more detail on this in Section 2.5. More generally, in certain situations this

can also be done in linear time for policies whose components are linear

functions the underlying state process [see Furmston and Barber, 2011]; we

will also return to this point in Section 2.6.

Up to this point we have presented the EM approach to policy search

32

in full generality. In the next section we will introduce a particular linear-

Gaussian model and show how this results in very efficient updates while

still allowing for quite general reward models.

2.3 A mixture of Gaussians model

We will now consider state and action spaces given by X = Rnx and A = Rna

and a linear-Gaussian1 transition model and policy,

µ(x1) = N (x1;µ1,Σ1),

f(xn+1|xn, an) = N (xn+1;Axn +Ban,Σ),

πθ(an|xn) = N (an;Kxn +m,σ2I).

Here the policy is parameterized by θ = (K,m, σ), the model itself is pa-

rameterized by (µ1,Σ1, A,B,Σ), and I is the identity matrix. The extended

state-space Z = Rnx+na will be given by by stacking state and action vectors

z = [x; a], and we can write the transition models in this space as

µθ(z1) = N (z1; µ̄1, Σ̄1), (2.18)

fθ(zn+1|zn) = N (zn+1; F̄ zn + m̄, Σ̄). (2.19)

Although the parameters (µ̄1, Σ̄1, F̄ , m̄, Σ̄) depend on θ we have left this

dependency implicit in order to simplify the notation. The exact form of

the parameters is given in Figure 2.2 and we give these terms without proof

as they are relatively simple to derive. We will further assume a reward

model which is a combination of P unnormalized Gaussians, i.e. squared

exponential functions of the form:

r(z) =
P∑
j=1

wj exp
{

(yj −Mjz)
TL−1

j (yj −Mjz)
}

(2.20)

each parameterized by (wj , yj ,Mj , Lj). It should be emphasized that these

functions are only used for their functional form, and in particular each yj is

1Let N (x;µ,Σ) denote a Normal distribution in x with mean µ and covariance Σ.

33

State-action transition parameters:

F̄ =

[
A B
KA KB

]
m̄ =

[
0
m

]
Σ̄ =

[
Σ ΣKT

KΣ KΣKT + σ2I

]
Initial state-action parameters:

µ̄1 =

[
µ1

Kµ1 +m

]
Σ̄1 =

[
Σ1 Σ1K

T

KΣ1 KΣ1K
T + σ2I

]

Figure 2.2: Definition of the transition parameters for a mixture of
Gaussians MDP.

a parameter and should not be interpreted as a random variable. It is also

worth noting that even were it normalized this is not strictly a Gaussian

density in z because of the presence of Mj .

With our model specified, we can now write the forward and backward

messages for this problem:

αn(z) = N (z; µ̂n, Σ̂n), (2.21)

βτ (z) =
∑
j

exp
{
−1

2(čjτ + zT Ω̌j
τz − 2zT µ̌jτ)

}
. (2.22)

The full recursive definition can be seen in Figure 2.3. The updates for

the forward message parameters are relatively simple, and are essentially

the same as those given in the update phase of the discrete-time Kalman

filter. The derivation of the backward messages is a more complicated (and

tedious) process, see Appendix A. Here we have reparameterized the indi-

vidual Gaussian components of the reward model in canonical form.

For any k and n we will let τ = k− n be the time to go. Following from

(2.12) we can write the unnormalized marginal posterior distribution over

zn as the product of forward and backward messages

pθ′(zn|k,R) ∝ αn(zn)βτ (zn) =
∑
j

w̃jnτ N (zn; µ̃jnτ , Σ̃
j
nτ), (2.23)

34

Forward message recursion:

µ̂1 = µ̄1 Σ̂1 = Σ̄1

µ̂n = F̄ µ̂n−1 + m̄ Σ̂n = F̄ Σ̂n−1F̄
T + Σ̄

Backward message recursion:

Σ̃−1
τ = Ω̌j

τ + Σ̄−1

µ̌j1 = MT
j L
−1
j yj

µ̌jτ = F̄ T Σ̄−1(Σ̃τ−1Σ̄−1m̄+ Σ̃τ−1µ̌
j
τ−1 − m̄)

Ω̌j
1 = MT

j L
−1
j Mj

Ω̌j
τ = F̄ T (Σ̄−1 − Σ̄−1Σ̃τ−1Σ̄−1)F̄

čj1 = −2 logwj + yTj L
−1
j yj

čjτ = čjτ−1 + log |Σ̄Σ̃−1
τ−1|+ m̄T Σ̄−1m̄

− (µ̌jτ−1 + Σ̄−1m̄)T Σ̃τ−1(µ̌jτ−1 + Σ̄−1m̄)

Figure 2.3: The forward and backward message recursions for the
mixture of Gaussians MDP. In order to ease notation as much as
possible we mark the statistics of the forward messages with a
hat (e.g. â) and mark the backward pass statistics with a check
(e.g. ǎ).

Σ̃j
nτ = (Σ̂−1

n + Ω̌j
τ)−1

µ̃jnτ = Σ̃j
nτ (Σ̂−1

n µ̂n + µ̌jτ)

w̃jnτ = |Σ̂−1
n Σ̃j

nτ |
1
2 exp

{
−1

2

[
čjτ + µ̂Tn Σ̂−1

n µ̂n − (µ̃jnτ)T (Σ̃j
nτ)−1(µ̃jnτ)

]}

Figure 2.4: The marginal posterior distribution parameterization for
the mixture of Gaussians MDP.

35

where the parameters (w̃jnτ , µ̃
j
nτ , Σ̃

j
nτ) are defined in Figure 2.4. Further, by

integrating this quantity over zn we can obtain the following quantities

pθ′(R|k) =

∫
αn(zn)βτ (zn) dzn =

∑
j

w̃jnτ , w̃nτ , (2.24)

pθ′(k|R) ∝ (1− γ)γk−1 w̃nτ . (2.25)

Again, as noted in Section 2.2.1 the k-step likelihood attains the same value

when computed for any n and the time posterior follows directly from (2.13).

Given θ = (K,m, σ) we can now calculate the partial derivatives of

log πθ(u|x) with respect to each policy parameter and plug these directly

into Equation (2.17) to obtain ∇θQ(θ, θ′), i.e.

∂Q

∂K
=
∑
k

pθ′(k|R)
k∑

n=1

σ−2 Eθ′ [AnXT
n −mXT

n −KXnX
T
n |k,R], (2.26)

∂Q

∂m
=
∑
k

pθ′(k|R)
k∑

n=1

σ−2 Eθ′ [An −KXn −m|k,R], (2.27)

∂Q

∂σ
=
∑
k

pθ′(k|R)

k∑
n=1

σ−3 Eθ′ [CTC|k,R]− nuσ−1, (2.28)

where C = An −KXn −m. By setting this gradient equal to 0 and solving

for θ we can obtain the EM update. The expectations needed to perform

these calculations can be trivially obtained from the sufficient statistics of

Zn, i.e.

Eθ′ [Zn|k,R] = w̃−1
nτ

∑
j

w̃jnτ µ̃
j
nτ , µ̃nτ , (2.29)

covθ′ [Zn|k,R] = w̃−1
nτ

∑
j

w̃jnτ Σ̃j
nτ , Σ̃nτ . (2.30)

We can then write the expected outer product of each state-action pair as

Eθ′ [ZnZTn |k,R] = Σ̃nτ + µ̃nτ (µ̃nτ)T . (2.31)

36

Finally, letting Σ̃
(X)
nτ and Σ̃

(A)
nτ denote the state and action components of

the covariance matrix respectively, and similarly defining µ̃
(X)
nτ and µ̃

(A)
nτ , we

can write the remaining expectation as

Eθ′ [CTC|k,R] = Tr(KΣ̃(X)
nτ K

T + Σ̃(A)
nτ) + ‖µ̃(A)

nτ −Kµ̃(X)
nτ −m‖2. (2.32)

2.4 Experiments

2.4.1 Results on synthetic data

In this section we will empirically observe the behavior of EM on Gaussian

MDPs of the form introduced in Section 2.3. These include

• standard EM, where the policy parameters are updated analytically

by finding a fixed-point to Equations (2.26–2.28);

• generalized EM, where optimization is performed using the gradient

∇Q(θi−1, θi−1) and a quasi-Newton method, LBFGS-B as stated ear-

lier.

• pseudo-gradient EM, where a “gradient” as given by taking the steps

provided by the standard EM approach and using this as the basis for

a quasi-Newton method.

The simplest way to test these methods involves randomly generating the

parameters of an MDP model and observing their convergence behavior.

We generated transition parameters Aij and Bij from a standard uniform

and components of the initial-state mean µ0 uniformly in the range [0, 5];

covariance terms for these models were initialized diagonally with standard-

deviations uniformly sampled in the range (0, 5]. The reward terms wj and

yj were initialized similarly, Mj was the identity, and the “covariances” Lj

were initialized using a random SPD matrix with eigenvectors uniformly

distributed in (0, 5].

As an aside, it is also worth noting that although we know the optimal

policy will be deterministic, by allowing the exploration term σ to vary

we obtain annealing-like behavior where local maxima are smoothed out

37

by a large initial value of σ. The plot in Figure 2.5 contains the average

convergence behavior of the two EM variants on a series of 100 simple, 1-

dimensional MDPs (a 3-dimensional parameter space). The trace of each

optimization process is normalized to be in the range [0, 1] and averaged

across all models. The first thing to note is the poor performance of the

standard EM algorithm as compared to the GEM algorithm. While these

approaches will typically converge to the same local maximum, this behavior

results from smaller step-sizes taken by the standard EM algorithm. This

behavior stems from the high proportion of hidden data and is a situation

that only worsens as the dimensionality increases.

We also contrast the EM-based approach to policy gradient methods in-

cluding: (i) a gradient-free approach using finite-differences and common

random numbers for variance reduction (i.e. PEGASUS [Ng and Jordan,

2000]); (ii) stochastic gradient ascent using the vanilla policy-gradient and

the vanilla policy-gradient combined with the optimal baseline; (iii) the nat-

ural actor-critic [Peters and Schaal, 2008]. The convergence rates of these

different algorithms can also be seen in Figure 2.5. Given a well chosen

learning rate—and if the reward model induces a nice, broad surface with

well-defined gradients—the policy-gradient methods perform quite well. It

is worth noting, however, that these algorithms are greatly affected by the

choice of learning rate. For most models it seemed possible to vary the learn-

ing rate of the policy-gradient methods in order to achieve performance

comparable with GEM, but these learning rates did not generalize across

multiple models and required multiple runs to obtain. One other tradeoff,

however, is the time-complexity of these two classes of algorithms. Each

iteration of the policy gradient algorithms runs in time O(pkmax) where p

is the number of trajectories, and kmax is the time-horizon; the EM-based

algorithms are O(k2
max). As a result, even accounting for the issue of learn-

ing rates, the fact that these algorithms are linear in kmax may make them

seem more attractive for problems with a large time-horizon.

The differences in performance, however, are much greater when the

reward function is rare, i.e. with support limited to only a small region of

the state space. Figure 2.6 shows the convergence behavior of the algorithms

38

0 5 10 15 20 25 30 35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Computational time (in s)

N
o

rm
a

liz
e

d
 e

x
p

e
c
te

d
 r

e
tu

rn
,

J
(θ

)

generalized EM

PEGASUS

p.gradient

p.gradient, baseline

natural actor−critic

standard EM

Figure 2.5: Convergence results for 100, randomly sampled 1-
dimensional mixture of Gaussians MDPs; higher is better. Here
the policy space is R3. For each algorithm we use the same
tuning parameters (i.e. learning rate, number of trajectories,
etc.) across different models. Also shown is the variation of
this performance between different models. The two red-lines
correspond to the EM algorithms proposed in this work, where
the higher of these two lines corresponds to the GEM algorithm.

on a set of larger, 3-dimensional state- and action-space models (policies in

these models are parameterized by θ ∈ R13). In particular we see that

the policy-gradient algorithms perform very poorly, and are for the most

part unable to make any progress towards the goal. This is because in

this space the reward model is much more rare than in lower dimensions,

resulting in little-to-no gradient information except in a small region around

the optimum and what little gradient exists is also likely washed out by the

noise in the system. The GEM algorithm does not suffer from this problem

not only because the iterations are analytic, but also because of the backward

messages. In contrast, the policy gradient algorithms only perform a noisy

forward pass, and so are much less likely to get good information about a

39

0 50 100 150 200 250 300 350 400

0

0.2

0.4

0.6

0.8

1

Computational time (in s)

N
o
rm

a
liz

e
d
 e

x
p
e
c
te

d
 r

e
w

a
rd

,
J
(θ

)

generalized EM

PEGASUS

p.gradient

p.gradient, baseline

natural actor−critic

0 100 200 300 400
0

0.5

1
M

o
d
e
l
1

θ
0
 far from optimum

0 100 200 300 400
0

0.5

1

θ
0
 near optimum

Figure 2.6: Convergence results for 20 randomly selected 3-
dimensional mixture of Gaussians MDPs. Here the policy space
is R13. The policy gradient algorithms did not have enough gra-
dient information to make any progress in all but a few of the
models. The two plots on top show the change in this behavior
when the initial policy θ0 is initialized closer to the optimum.

rare reward. We also experimented with starting the initial value of θ closer

to the optimum, as can be seen from the top plots of Figure 2.6, and we

see that the the policy gradients are able to make progress in this situation.

This is not, however, an effective strategy: in order to find a closer value for

θ0 we were forced to initially solve the system using the GEM algorithm.

2.4.2 Robotic applications

Consider an n-jointed robotic system such that q, q̇, q̈ ∈ Rn denote the joint

angles, velocities, and accelerations respectively. Most such systems can be

40

described by the rigid-body dynamics

q̈ = M−1(q)(τ − c(q, q̇)− g(q)), (2.33)

where M(q) denotes the inertia matrix, c(q, q̇) denotes the coriolis and cen-

tripetal forces, g(q) is the force due to gravity, and τ the torques generated

by the motors. The objective is then to control the evolution of the joints

[q; q̇; q̈] ∈ R3n with actions given by some sequence of torques τ ∈ Rn. It is

easy to see from (2.33), however, that the dynamics of this system are highly

non-linear and as a result we cannot apply the techniques of Section 2.3. But

the system can instead be reformulated in a different action-space that en-

forces linear dynamics.

A system can be called feedback-linearizable if there exists some function

τ̂(q, q̇, q̈) that cancels the natural dynamics of the system in some local

neighborhood of (q, q̇, q̈), where q̈ is some desired joint-space acceleration.

That is, we want a function τ̂ that locally approximates the torque required

to maintain some acceleration q̈ from the state (q, q̇). In general this function

can be obtained via an estimate of the inverse dynamics [Lewis et al., 2004].

Given the inverse dynamics, we can control the evolution of states x = [q; q̇]

via actions a = q̈ where the dynamics are linear.

While it is often possible to linearize the dynamics of such a system, this

can drastically change the reward model necessary to induce some desired

behavior. It is also frequently the case that the reward model depends on

non-linear terms such as the end-effector position x̂(q), typically written via

the forward-kinematics of the system and depending on parameters such as

the link lengths and masses [again, see Lewis et al., 2004]. Although the

reward may be a simple quadratic with respect to the end-effector position,

this will in general be non-linear in x and a. These are precisely the sit-

uations where the mixture of Gaussians approach presented earlier should

prove useful. On one hand this formulation immediately allows us to tackle

multimodal regulation tasks whose rewards can be specified in the form of

Equation (2.20). Another possibility, though, would be to fit the model

either to some known functional form or to data.

41

q1

q2
q3

x̂(q)

xhole

Figure 2.7: Model of a robot arm “peg-in-hole” task.

One simple application of this technique on a robotic model is the “peg-

in-hole” task, a depiction of which is shown in Figure 2.7. The goal of this

task is to move the end-effector into some position xhole and regulate about

this point. We can specify the reward as

r(x, u) = r(q, q̇, q̈) = exp
{
−λ1‖x̂(q)− xhole‖2 − λ2‖q̇‖2 − λ3‖q̈‖2

}
.

Rather than attempting to fit this entire model, we can instead restrict

ourselves to the reward-terms depend on q. In this paper we fit the model

using the sparse, pseudo-input Gaussian Processes regression of [Snelson and

Ghahramani, 2006]. The regression process results in a linear-combination

of Gaussians with parameters (wj ,mj , Sj) that can be used to approximate

the full reward model:

r(q, q̇, q̈) ∝
∑
j

wj N (q;mj , Sj) · exp
{
−λ2‖q̇‖2 − λ3‖q̈‖2

}
∝
∑
j

wj N ([q, q̇, q̈]T ; yj , Lj),

for yj = [mj , 0, . . . , 0]T and Lj = blkdiag(Sj , λ
−1
2 I, λ−1

3 I). Given this infor-

mation we can now perform policy search over the 22-dimensional space of

42

all policies. Here we use a maximum time-horizon kmax = 100. Figure 2.8

shows a trace of the resulting optimization process; the resulting policy is

successfully able to move the arm’s end-effector to the position xhole and

from there regulates about this point. Here, although not a simple problem,

the reward is relatively broad, and the natural actor-critic was able to do

well. Due to the analytic nature of the GEM approach, however, we are

still able to improve on this policy in the long-run. The GEM algorithm

actually converges quite quickly, but each iteration is adversely affected by

the O(k2
max) time complexity. Based on these results we also experimented

with putting a single, very peaked reward at the resulting target joint an-

gles. These results are also shown in Figure 2.8, and we can see that the

analytic GEM algorithm greatly outperforms the natural actor-critic with

rare rewards.

2.5 An extension to semi-Markov Decision
Processes

Formally we can define an SMDP as a continuous-time controlled stochastic

process Z(t) = (X(t), A(t)) consisting, respectively, of states and actions

at every point in time t. In particular we will assume that the system

transitions at random arrival times Tn and that the process is constant in

between jumps, i.e. Z(t) = Zn = (Xn, An) for all t ∈ [Tn, Tn+1). It is this

use of random transition times that makes this a semi-Markov Decision

Process (SMDP). In order to handle this generalization we will introduce

random sojourn times Sn > 0 representing the amount of time spent in the

nth state, i.e. Tn+1 = Tn + Sn. In order to fully specify the SMDP model

we repeat the standard MDP models defined over the extended state space

Z = X ×A, i.e.

• a transition model fθ(zn+1|zn), initial-state model µθ(z1), and reward

model r(zn);

and in addition we must specify

• a time model g(sn|zn);

43

0 10 20 30

0

10

20

30

40

50

60

70

80

90

100

Computational time (in hrs)

E
x
p

e
c
te

d
 r

e
tu

rn
 J

(θ
)

Learned GP reward

generalized EM

Natural actor−critic

0 100 200 300 400 500

0

10

20

Rare reward with k
max

=50

0 50 100 150 200 250

0

2

4

6

8

Computational time (in s)

Rare reward with k
max

=20

Figure 2.8: A trace of the optimization process for the 3-jointed robot
arm model using the learned reward (left) and a rare reward
(right).

• and a discount rate β > 0, analogous to the standard discount factor.

Importantly, the time model does not depend on the duration of the previous

interval. See Figure 2.9 for an illustration of this process.

We can now write the joint probability over sequences of state-action

pairs and sojourn times as

pθ(z1:k, s1:k) = µθ(z1) g(s1|z1)

k∏
n=2

g(sn|zn) fθ(zn|zn−1) (2.34)

for any choice of horizon k. Unlike in an MDP, however, our discounting

behaves differently in order to take into account the variable time in each

state. In particular, we will discount the reward continuously over our entire

trajectory using a parameter β, which is a continuous-time analogue of the

44

z1 = (x1, a1)

z2 = (x2, a2)

z3 = (x3, a3)

z4 = (x4, a4)

t1 t2 t3 t4

s1 s1 s2

st
at
es

an
d
ac
ti
on

s

Figure 2.9: Relationship between arrival times tn, sojourn times sn,
and the system state zn = (xn, an) in the SMDP model.

discount factor γ used in previous sections. We can then write the objective

function as

J(θ) = Eθ
[∫ ∞

0
e−βt r(Z(t)) dt

]
which because of the jump-Markov nature of our transitions will simplify to

= Eθ
[∞∑
n=1

β−1e−βTn(1− e−βSn) r(Zn)

]
. (2.35)

As a result, we can also think of this as an MDP with discrete steps, but

where the discounting for each step is stochastic, and more importantly

non-uniform. Intuitively this means that we have a system where we more

severely discount those steps that take longer.

Based on the intuition developed earlier for MDPs we can interpret the

discount terms in (2.35) as a distribution over random time horizons k and

write the following joint distribution over paths and path lengths:

pθ(k, z1:k, s1:k) = e−βtk(1− e−βsk) pθ(z1:k, s1:k). (2.36)

45

This distribution is again defined over a trans-dimensional space
⋃∞
k=1({k}×

Zk × Rk+) where R+ is the set of strictly positive real numbers. Also, note

that tk =
∑k−1

n=1 sn is defined as the arrival time of the kth step and as a

result is a deterministic function of the sojourn times up to step k. Unlike in

the standard MDP case, however, this distribution is not nearly as straight-

forward to work with. Nor is there the simple division between path-lengths

and paths.

Proposition 2. The joint distribution introduced in (2.36) is properly de-

fined and normalized, i.e. it integrates to 1.

Proof. As noted above, the density defined in (2.36) is with respect to a

trans-dimensional measure defined over the space
⋃∞
k=1({k} × Zk × Rk+).

We can first easily see that conditioned on k we have a path distribution

just as in previous sections defined over Zk × Rk+, which is well-defined so

long as the underlying transition and time densities are well defined. As

long as the distribution then gives rise to a proper marginal in K, then the

joint density is proper.

For any given k we can integrate out the path components, allowing us

to write the marginal as

pθ(k) = E[e−βTk]− E[e−βTk+1]

where again, Tk = S1 + · · · + Sk−1 is the starting time of the kth step, or

equivalently the ending time of the (k − 1)th step. From here we can sum

over the values of k, arriving at

∞∑
k=1

pθ(k) =

∞∑
k=1

(
E[e−βTk]− E[e−βTk+1]

)
,

i.e. a telescoping series involving only the first and last terms for finite k,

which can be written as

= E[e−βT1]− lim
k→∞

E[e−βTk]

= E[e−βT1] = 1.

46

The final equality holds since Tk is monotonically increasing due to the

requirement that each Sn > 0 and T1 = 0.

With this path density in place we can now utilize a reward likelihood

p(R|k, zk) = r(zk) as in previous sections. This allows us to write the

following joint density

pθ(k, z1:k, s1:k, R) = pθ(k, z1:k, s1:k, R)

= pθ(k, z1:k, s1:k) p(R|k, zk)

corresponding to the complete data likelihood. We can then marginalize

this density over the hidden data or condition on the observed data to write

the incomplete data likelihood and posterior distribution respectively as

pθ(R) =
∞∑
k=1

∫∫
pθ(k, z1:k, s1:k, R) ds1:k dz1:k,

pθ(k, z1:k, s1:k|R) =
pθ(k, z1:k, s1:k, R)

pθ(R)
.

We can then easily show that maximizing the incomplete data likelihood is

equivalent to maximizing the expected reward of the SMDP.

Proposition 3. The objective function J(θ) from (2.35) is proportional to

the marginal likelihood defined in (2.4). More precisely,

J(θ) = β−1 pθ(R).

Proof. Given the joint distribution pθ(k, z1:k, s1:k) we can rewrite our objec-

tive from (2.35) as

β J(θ) = Eθ
[∞∑
n=1

e−βTn(1− e−βSn) r(Zn)

]

=

∞∑
k=1

∫∫
pθ(z1:k, s1:k) e

−βtk(1− e−βsk) r(zk) ds1:k dz1:k

47

=
∞∑
k=1

∫∫
pθ(k, z1:k, s1:k) r(zk) ds1:k dz1:k

= pθ(R).

Similar to the MDP case we have obtained this result by exchanging the

order of integration and summation and pulling the discount factor into the

previously introduced distribution from (2.36).

At this point we can also note how the formulations of this section sim-

plify in the MDP case, and more importantly why these simplifications do

not hold for SMDPs. In particular, when the sojourn times are given de-

terministically by Sn = 1 we recover a standard infinite-horizon, discounted

MDP with a discount factor of γ = e−β. It is precisely because the sojourn

times are independent of the states Zn that we can factorize the joint distri-

bution in (2.2) as a prior over path lengths K and paths conditioned on this

length Z1:K . Unfortunately this interpretation does not hold in the case

of more general SMDPs. By looking at the discount factors in (2.36) we

can see that the probability of a specific trajectory length K is a function

of all sojourn times S1:K , and as a result the distribution over the random

variable K depends on an infinite number of sojourn times. However, while

the SMDP formalism does not have as clean of a probabilistic interpretation

as MDPs, we can still apply this model by working directly with the joint

distribution.

Finally, given these quantity we can focus on the problem of maximizing

the incomplete data likelihood. Again, we will utilize an EM algorithm in

order to do so, and can write the Q function as

Q(θ, θ′) = Eθ′
[
pθ(K,Z1:K , S1:K , R)

∣∣R]
=
∞∑
k=0

k∑
n=0

∫
pθ′(k, zn|R) log πθ(zn) dzn + const. (2.37)

Here we have integrated out the sojourn time variables S1:K , but these still

affect the posterior distribution due to their effect on the path length K.

Note also that this is very similar to the standard MDP formulation, however

48

as noted earlier we can no longer factorize the joint pθ′(k, zn). In the next

subsection we will detail the E-step necessary to construct this distribution;

the M-step follows directly from the exposition in Section 2.2.2

2.5.1 The E-step

We start by writing the marginal distribution as the integral of the posterior

distribution with respect to all those terms other than k and zn,

pθ(k, zn|R) =

∫
pθ(k, z1:k, s1:k|R) dz1:n−1 dzn+1:k ds1:k

which can then be broken into those components that come before and after

n respectively, i.e.

∝
∫
e−βtn pθ(z1:n, s1:n−1) dz1:n−1 ds1:n−1 × (2.38)∫
e−β(tk−tn)(1− e−βsk) r(zk) pθ(zn+1:k, sn:k|zn) dzn+1:k dsn:k.

Recall that the arrival times are given by the sum of previous sojourn times

tn = s1 + · · · + sn−1, and note that we have also omitted the constant of

proportionality, given by pθ(R|k). We should emphasize the fact that we

are not integrating over zn, which enables us to break the original integral

into two independent integrals.

Following the notation from Section 2.2.1 we can now introduce the

forward and backward messages, αn(zn) and βτ (zn) respectively2, where

again τ = k − n. In particular these messages are given exactly by the two

components of (2.38). Just as with the standard MDP we can then write

the marginal as the product of forward and backward messages

pθ(k, zn|R) ∝ αθ(zn)βk−n(zn). (2.39)

2The notation here is slightly confusing in that we have a term β denoting the continu-
ous discount factor and βθ(·|τ) denoting the backward messages. This confusion, however,
seems unavoidable as both of these terms are unanimously used in their respective liter-
atures. To somewhat alleviate this confusion we note that the backward messages are
always subscripted.

49

It is crucial to note, however, that unlike in the earlier MDP formulation

these messages are not probability distributions due to the way the dis-

count factors have been split between the forward and backward compo-

nents, namely:

e−β(s0+···+sn−1)︸ ︷︷ ︸
forward

e−β(sn+···+sk−1)(1− e−βsk)︸ ︷︷ ︸
backward

.

This causes no technical (or conceptual) difficulties, though, because when

combined in (2.39) these messages form the desired probability distribution.

This is similar in spirit to techniques used to maintain numerical stability

when working with hidden Markov models [Bishop, 2006].

Finally, by integrating the components of (2.38) successively we can

recursively define the messages as

αn(zn) =

∫
αθ(zn−1) fθ(zn|zn−1) dzn−1 ×

∫
e−βsn−1 g(sn−1|zn−1) dsn−1,

(2.40)

βτ (zn) =

∫
βτ−1(zn+1) pθ(zn+1|zn) dzn+1 ×

∫
e−βsn g(sn|zn) dsn. (2.41)

Here we can see that we have the standard MDP forward message recursions

multiplied by an additional integral due to the sojourn times. Given the

format of these two messages we can further introduce what we call an

“expected discount factor”

γ(z) =

∫
e−βs g(s|z) ds (2.42)

which corresponds to the integral over sojourn times noted above. We can

consider this term as a generalization of the MDP formalism wherein dis-

count factors are no longer constant and instead depend on the current

state and the action taken from that state. Further, we can see that for any

exponential-family distribution this integral will exist in closed form.

50

2.5.2 Discrete models with Gamma-distributed time

The methods presented in previous sections, as with all EM-based proce-

dures, provide a “meta-algorithm” which depends upon the exact models in

use. In this section we present a simple model for the purposes of illustrat-

ing the procedure, namely a model where the states and actions are discrete

and sojourn times are given by a Gamma distribution. While simple, this

model nonetheless presents an interesting scenario for planning and control

domains because it can naturally be extended to cases when we want to rea-

son about more complex distributions over the time to complete an action.

In our experiments, we define the following standard discrete models:

µ(x) = µx,

f(x′|x, a) = Pxax′ ,

r(x, a) = Rxa,

πθ(a|x) = θxa.

Finally we will also assume sojourn times are Gamma distributed random

variables with density,

g(s|x, a) = Γ(s; kxa, σxa).

In this setting the expected discount factor noted in (2.42) can be written

as the matrix

γxu =

∫
Γ(s; kxu, σxu) e−βs ds

=

∫
skxu−1 exp

(
− (β + σ−1

xu) s
)

Γ(kxu) σkxuxu

ds = (1 + βσxu)−kxu .

This particular form arises purely from the use of Gamma-distributed so-

journ times, and in fact we can imagine extending this to continuous spaces

using functions k(x, u) and σ(x, u).

Under this formulation we will let βτxu denote the τ -step backward mes-

sage and αnx the n-step forward message in state-space. We can easily see

51

that the extended-state space forward message is given by αnx θxa. Given the

specific models introduced earlier we can explicitly write these messages as

αnx =
∑
x′,a′

αn−1
x′ θx′a′ Px′a′x γx′a′ , (2.43)

βτxa = γxa
∑
x′,a′

βτ−1
x′a′ Pxux′ θx′a′ , (2.44)

where the messages are initialized with α1
x = µx and β0

xa = Rxa(1 − γxa).
By plugging these terms into the Q-function defined in (2.37) we can write

Q(θ, θ′) ∝
∞∑
k=0

k∑
n=0

∑
u,x

(log θxu)αnx θ
′
xu β

k−n
xu

=
∑
u,x

(log θxu) θ′xu

[∞∑
n=0

αnx

][∞∑
τ=0

βτxu

]
,

where the second equality can be obtained by rearranging the sums over k

and n. This alternate formulation is particularly useful in discrete models

where the sum over forward and backward messages can expressed as finite

quantities, i.e. a vector and a matrix respectively. Further, given this formu-

lation we can optimize the Q-function for each state x individually, which is

possible because in discrete domains we can find the optimal action to take

for each state regardless of the probability of visiting that state. By taking

the gradient of the log-policy ∇ log πθ(a|x) = θ−1
xa and solving ∇Q(θ, θ′) = 0

for θ, subject to the constraint that
∑

u θxu = 1 for each x, we arrive at the

following solution methods:

θxu ∝ θ′xu
∞∑
τ=0

βτxu, (EM)

θxu = δm(x)(u) where m(x) = arg max
u′

∑∞
τ=0β

τ
xu′ . (greedy-EM)

Here the EM solution is performing exactly the optimization described

above, while the greedy-EM solution, however, myopically chooses for each

state x the one action u that maximizes the total future rewards when taken

52

from that state. In particular, the greedy solution can be seen as iterations

which correspond to repeated M-steps which skip intermediate E-steps as is

shown by [Toussaint et al., 2006], and in this sense this method is equiva-

lent (again only for discrete models) to policy iteration. In larger discrete

models, however, the EM approach has the advantage over policy iteration

in that it is possible to prune computation (by using the forward messages

α) in a principled manner; see [Toussaint et al., 2006] for more details.

We first test these algorithms on a small, 16-state, 5-action domain with

randomly generated transition and sojourn parameters, as well as a ran-

domly generated reward model. The principal challenge of this domain,

over other discrete domains, is to take advantage of the structure in the so-

journ time distribution. The top-left plot of Figure 2.10 displays convergence

properties of the described algorithms as well as a comparison to a standard

policy-gradient method [see e.g. Baxter and Bartlett, 2001]. In particular

we should note that the resulting model was densely connected which allows

for quick travel across the space, and explains the very good performance

of the stochastic policy gradient algorithm. Also shown for policy gradients

are error-bars corresponding to one standard deviation. The other methods

don’t need error bars because they are deterministic.

Building upon these results, the top-right plot shows the algorithms

learning in a more structured environment. In particular the model used has

grid-structured transitions on a small 4-by-4 grid. This model is especially

interesting because we specify different Gamma-distributions for the inner

nodes than the outer nodes such that the inner nodes move much more

slowly. Also, we use a sparse reward model where most states have negligible

reward and one state has high reward. The most important thing to note

from this sub-figure is that the policy gradient method starts to break down

under this sparse transition and reward model, even though the size of the

state and action spaces are the same as in the previous example.

Lastly the bottom-left plot of this figure displays the progress of these

algorithms on a much larger 20-by-20 grid, i.e. one in which there are 2000

state-action pairs. Similar to the previous example there is a single (rela-

tively) large reward in the upper right corner of the grid and inner nodes

53

Figure 2.10: Results on various discrete SMDP models. The top-left
plot shows convergence of the described algorithms on a ran-
domly generated, dense model; the top-right plot shows per-
formance on a model of the same size but with grid-like tran-
sitions and more structured transition times. The bottom-left
plot shows performance on a larger grid domain. The bottom-
right shows the learned policy in the larger domain. For both
grid domains there is a single large reward (denoted with a
dot) and transitions taken outside of the edge states (denoted
with grey) have a larger expected sojourn time.

54

with much slower sojourn times. Here we see that the EM algorithms vastly

out-perform the policy gradient method and the learned policy successfully

skirts the outside edge of the state-space in order to most quickly get to the

high reward. Here the policy gradient method has relatively low-variance

because it is not able to make any progress (i.e. it is stuck exploring a

plateau with very little gradient information).

2.6 Chapter summary and conclusions

In this chapter we presented an alternative view of model-based policy search

as one of maximum likelihood in an an equivalent probabilistic model. We

then used this procedure to develop a novel policy search method based

on linear-Gaussian transitions and mixture-of-Gaussians rewards. This ap-

proach is able to fit any arbitrary smooth reward function—essentially ex-

tending the approach of LQR to arbitrary rewards. We showed results of

this procedure on randomly generated MDPs, as well as an example robotic

application. These results show that for rare rewards the analytic policy

search methods developed in this chapter are able to out-perform simpler,

simulation-based policy gradient method. Further, the analytic nature of

this search procedure allows for broad initial policies which aid in the ex-

ploratory behavior of early iterations. One of the primary benefits of this

probabilistic perspective on decision problems is that it provides a standard

framework for integrating approaches from more standard machine learning

algorithms, such as those used for supervised learning and inference. As an

example, the derivations the mixture-of-Gaussians model were simplified by

their analogy to work done in hidden Markov models and linear dynamical

systems.

Later in this chapter we also extended the probabilistic approach to that

of semi-Markov models. Although this is presented as a proof-of-concept, our

work was the first to extend the maximum-likelihood method to this type

of decision problem. This presents an interesting area of future research

as it provides for a research path for extending these ideas to hierarchical

planning and RL, such as that discussed in [Ghavamzadeh and Mahadevan,

55

2007]. This work does, however, directly allow for continuous time models

to be solved using EM.

Further, in this chapter while we presented an EM algorithms for solving

MDPs, solving one could also consider more general variational approaches

to attacking these decision problems. To some degree this has been pro-

posed by [Furmston and Barber, 2010], however more specific approaches to

take advantage of specific model structure would substantially push these

methods forward. Finally, as noted in later work by [Furmston and Barber,

2011] when building on our earlier mixture-of-Gaussians model, when the

parameter updates are linear in the necessary expectations, such as E[Zn|k],

the computation of the gradient can be sped up to linear complexity. This

observation may allow for quite general “exponential-family MDPs” in a

similarly vein to their application to many standard inference tasks; see e.g.

[Wainwright and Jordan, 2008].

56

Chapter 3

Bayesian methods for solving

Markov Decision Processes

In Chapter 2 we introduced a probabilistic model over latent paths (K,Z1:K)

and a dummy observation R such that the marginal likelihood of this ob-

servation under parameters θ coincides with the expected reward of those

parameters. In this chapter we will utilize a similar probabilistic model,

except rather than optimizing the policy parameters we will perform a full

Bayesian analysis of these parameters, producing a posterior p(θ|R) that is

proportional to the expected reward. The contributions of this chapter are

mostly algorithmic, in that we present the first approach and application

of Markov Chain Monte Carlo (MCMC) to the problem of policy search.

However, we will also show that this approach has benefits for gradient-free

policy search that is useful in situations where the gradient information is

very poor.

We will first give a brief overview explaining the extension of the previ-

ous Chapter’s approach to the Bayesian setting in Section 3.1. We will then

provide a general, relatively high-level introduction to Markov Chain Monte

Carlo (MCMC) in Section 3.2; we will however have to bring in some tech-

nical details in order to deal with the trans-dimensional nature of (K,Z1:K).

In Section 3.3 we will introduce a novel Bayesian approach to policy search

using MCMC and in Section 3.4 we will introduce a number of improve-

57

ments to this basic algorithm in order to improve the mixing properties of

the Markov chain. We will also show in Section 3.5 how to modify this

MCMC approach to optimize the policy parameters. Finally in Section 3.6

we will provide a number of experiments testing the performance of this

procedure and the affect of the improved sampling process.

3.1 A Bayesian interpretation of the MDP
problem

In this chapter we return to the problem of solving Markov decision pro-

cesses with parameterized policies. In particular, we will treat the vector of

unknown policy parameters θ as a latent random variable. Conditioned on

this random variable we write the posterior from (2.8) as

p(k, z1:k|R, θ) ∝ p(k, z1:k|θ) p(R|k, zk)

This term is exactly the same as in Chapter 2, we have just rewritten it

in such a way as to emphasize the fact that θ is now a random variable.

With this notational detail out of the way we will now introduce a prior

over the parameter vector p(θ) and write the joint posterior over paths and

parameters as

p(θ, k, z1:k|R) ∝ p(θ) p(k, z1:k|R, θ). (3.1)

By marginalizing this quantity with respect to the path parameters (k, z1:k)

we can easily see that we obtain

p(θ|R) ∝ p(θ) p(R|θ). (3.2)

In other words, ignoring the prior term p(θ) we can see that the marginal

posterior for policy parameters is proportional to the expected reward of

those parameters (via Proposition 1). By applying the results of the previ-

ous chapter we could obtain the maximum a posteriori (MAP) estimate by

directly optimizing this quantity.

58

Instead, in this chapter we will introduce a method which provides a

sample-based, Monte Carlo approximation to the posterior. By construc-

tion, samples from the marginal posterior (3.2) will concentrate in regions

of high expected reward J(θ). This is a particularly interesting feature

in situations where the reward function is concentrated in a region of low

prior probability p(k, z1:k|θ), which is often the case in high-dimensional

control settings. Note that if we wanted to estimate J(θ) using importance

sampling, then the distribution given by p(k, z1:k|R, θ) corresponds to the

optimal zero-variance importance distribution.

Finally, as noted above, the posterior is proportional to the expected

reward only when we ignore the effect of the prior distribution. However, if

the integral
∫
J(θ) dθ is finite, one possible option is an improper, uninfor-

mative prior p(θ) ∝ 1. Another reasonable choice is a uniform distribution

on a bounded region of the parameter space. This will restrict samples to

a fixed region but will not alter the expected reward surface inside that

region. Alternatively we can abandon uninformative priors and treat this

term as a regularizer which limits the policy complexity. For example we

could use either Gaussian or Laplace priors centered at zero, corresponding

to the standard use of `2 or `1 penalties respectively. The so called “spike

and slab” prior is another sparsity-inducing prior, like the `1 penalty, often

used in Bayesian analysis [Mitchell and Beauchamp, 1988]. In this work we

will focus on uninformative priors for the sake of simplicity, although we

note that a broad Gaussian is a good compromise, corresponding to an `2

regularizer with a small penalty parameter. We will return to the problem

of sparsity-inducing priors in Chapter 4.

3.2 Markov Chain Monte Carlo

Although a complete description of Markov Chain Monte Carlo (MCMC)

is beyond the scope of this work, in this section we will provide a brief

introduction—specifically introducing the ideas and notation we will need

in order to apply this technique to the problem of policy search. We will

largely follow the exposition of [Green, 2003]; see also the excellent introduc-

59

tions of [Geyer, 2010] or [Robert et al., 1999, chapter 7] for a more in-depth

treatment. The algorithm that we will specifically describe in this section

is known as reversible jump MCMC as introduced by [Green, 1995], or the

“Metropolis-Hastings-Green” algorithm as it is referred to by Geyer. This

procedure is a generalization of the widely celebrated Metropolis-Hastings

algorithm, but as we will see, this extension allows for the use of much

more general state spaces. In particular it is often used for sampling the

parameters of mixture models where the number of components is un-

known [Richardson and Green, 1997]—exactly the trans-dimensional setting

that we are confronted with.

We will now consider the problem of simulating a distribution η defined

over some general state space X . Rather than directly sampling from the

distribution of interest, which may not even be possible, an MCMC method

produces an ergodic Markov chain {X(i)} whose stationary distribution is

η. In order to ensure the Markov chain targets the proper stationary distri-

bution we will introduce a transition kernel K which satisfies the detailed

balance condition∫∫
A,B

η(dx)K(x, dx′) =

∫∫
A,B

η(dx′)K(x′, dx) (3.3)

for all Borel sets A,B ⊂ X . Transitions under this kernel are defined by

some proposal (or instrumental) measure q(x, dx′) from which we sample a

candidate state x′ and accept this state with probability α(x, x′), which we

will derive shortly. If the candidate state is rejected the Markov chain will

remain in state x. We can now more explicitly write the kernel as

K(x, dx′) = α(x, x′) q(x, dx′) + (1− r(x)) δx(dx′), (3.4)

where r(x) =
∫
α(x, x′) q(x, dx′) is the total probability of accepting a move

away from x and δx(dx′) denotes a Dirac mass at x. Plugging this kernel

into (3.3) we can note that due to the rejection step there exists an atom

at x resulting in the quantity
∫
A∩B η(dx) (1 − r(x)) on both sides of the

equality. By subtracting this from each side, we can rewrite the detailed

60

balance condition as∫∫
A,B

η(dx) q(x, dx′)α(x, x′) =

∫∫
A,B

η(dx′) q(x′, dx)α(x′, x). (3.5)

It can be shown [Green, 1995] that the joint measure η(dx) q(x, dx′) is dom-

inated by a symmetric measure λ on X × X . Letting g be the density

(Radon-Nikodym derivative) of the joint measure with respect to the domi-

nating measure we can rewrite the detailed balance condition one last time

as∫∫
A,B

α(x, x′) g(x, x′)λ(dx, dx′) =

∫∫
A,B

α(x′, x) g(x′, x)λ(dx′, dx). (3.6)

From here we can see that an appropriate choice for the acceptance proba-

bility is as follows:

α(x, x′) = min

{
1,
g(x′, x)

g(x, x′)

}
. (3.7)

If both the proposal kernel and target distribution have densities with re-

spect to the same base measure, which we will also denote with η(·) and

q(·|x), we can write this as the standard Metropolis-Hastings (MH) accep-

tance probability

αMH(x, x′) = min

{
1,
η(x′)

η(x)
· q(x|x

′)

q(x′|x)

}
. (3.8)

The MH approach is still quite general as long as proposal densities can be

defined with respect to the same base measure as the target distribution.

This, for example, allows for a mixture of proposal kernels where the mixing

probability is state independent. The Gibbs sampler is a further special case

of this mechanism, where one chooses to individually update components

with proposals q(xj |x′−j) given exactly by the marginal densities of xj ; here

the subscript in x′−j is used to denote all variables other than the jth. In

this case the proposal densities will cancel with the target densities and we

will be left with a acceptance probability of 1.

We will see, however, a need for the full generality of (3.7) in situations

61

where the the proposals are singular with respect to the equilibrium distri-

bution. As is the case in this work, this is often necessary for state spaces

which are the union of sets of varying dimensions.

One last point that becomes obvious from the acceptance ratios is that it

is only necessary to evaluate the required densities up to a constant of pro-

portionality. We can easily see this in the case of the standard Metropolis-

Hastings move (3.8), as any constant associated with the density over η(x′)

will cancel due to the presence of η(x); similarly for the proposal distribu-

tion. This is crucial to the practicality of these methods, as the normalizing

constants are often intractable to compute—in fact in the case of policy

search this quantity is obtained by integrating J(θ) over the space of policy

parameters. For the more general ratio in (3.7) we can see that a similar

situation also holds, where typically the joint density f will involve a ratio

of posterior densities and allow us again to ignore the intractable constant.

3.3 Reversible jump MCMC for Bayesian policy
search

We will now move on to the central problem of interest for this chapter,

namely sampling from the marginal distribution p(θ|R). As noted earlier,

samples generated from this distribution will concentrate in regions of high

expected reward. In general, however, it is not possible to directly simulate

from this posterior due both to the latent variables and the effect of condi-

tioning on R. Instead, in this section we will develop an MCMC method that

will asymptotically generate samples {(θ(i), k(i), z
(i)
1:k)} from p(θ, k, z1:k|R).

By discarding the “nuisance” data corresponding to latent paths this proce-

dure will result in samples {θ(i)} distributed according to our desired target.

In order to produce samples from the joint posterior (3.1) we will consider

three primary types of updates:

1. birth and death moves which mix over the trans-dimensional path

space (k, z1:k) conditioned on the policy parameters θ;

2. fixed-dimensional updates to the path z1:k conditioned on the param-

eters θ and the path length k;

62

3. updates to the policy parameters θ conditional on the current fixed-

dimensional path (k, z1:k).

The last two of these proposals can be performed using standard Metropolis-

Hastings and are only slight modifications of approaches generally used for

sampling hidden states and model parameters respectively from more stan-

dard state space models (SSMs). It is only the first proposal type that

is somewhat non-standard and requires the full generality of the reversible

jump algorithm introduced in the previous section. A brief overview of this

algorithm can be seen in Algorithm 1.

Algorithm 1
Basic MCMC procedure for jointly sampling both trajectories and policy
parameters.

1: Initialize (θ, k, z1:k), possibly by sampling from the prior.
2: for i ≥ 1 do
3: Trans-dimensional update: propose a new k′-length trajectory

(k′, z′1:k′) and accept with the proper acceptance probability.
4: Fixed-dimensional update: propose a new trajectory (k, z′1:k).
5: Parameter update: propose new parameters θ′.
6: end for

3.3.1 Sampling trajectories using reversible jump MCMC

Let (θ, k, z1:k) denote the current state of some Markov chain targeting our

desired posterior. By holding θ fixed we will now introduce a Markov tran-

sition kernel which targets the conditional posterior p(k, z1:k|θ,R) and con-

sisting of a state-dependent mixture of birth and death moves to mix over

the trans-dimensional state. Let cbirth(k) be the probability of proposing a

birth move and cdeath(k) = 1 − cbirth(k) be the probability of proposing a

death move. We can then summarize the proposal mechanism as follows:

• With probability cbirth(k) we will perform a birth move wherein we

sample a location uniformly in the interval {1, . . . , k+ 1} and propose

the insertion of a new state Z ′ ∼ qθ(·|zj−1:j) at position j. This results

in the proposed trajectory = (k + 1, (z1:j−1, z
′, zj:k)).

63

• Otherwise, with probability cdeath(k) we will perform a death move.

For this move we uniformly sample a location in the interval {1, . . . , k}
and propose killing the indexed state, resulting in the proposed tra-

jectory (k − 1, (z1:j−1, zj+1:k)).

Note, given the horizon k we can think of this as a mixture of 2k+1 possible

moves, where with probability cbirth(k) 1
k+1 we propose a move introducing a

new state at one of k+1 positions; with probability cdeath(k) 1
k we propose a

move killing one of k current states. In this work we will generally consider

a constant probability of proposing a birth move cbirth(k) = 0.5, however in

order to ensure that we don’t kill off the only component in our trajectory

we must enforce cbirth(1) = 1.

With these proposals defined we can now write the acceptance ratios

necessary to perform reversible jump. First, we can easily see that the joint

measure of paths and their proposals is defined over the space

(Zk ×Zk+1) ∪ (Zk+1 ×Zk) (3.9)

for all k > 0. Note that this space is constructed such that for some measure

λk(dx, dx′) defined over this space, if dx is a measurable subset of Zk+1 then

dx′ must be k-dimensional—and vice-versa. Next let λ be some measure1

such that λk dominates the k-dimensional posterior and such that the pro-

posal is dominated by λ. Due to the proposal definitions we can see that the

joint measure is dominated by the image of λk+1 onto the subset of (3.9)

such that k of the coordinates coincide. This is due purely to the fact that

we only add or delete one component. We can then define the following

density with respect to this dominating measure:

g((k, z1:k), (k
′, z′1:k′))

= p(k, z1:k|R, θ)

cbirth(k) 1
k+1 qθ(z

′
j |zj−1:j) for k′ = k + 1,

cdeath(k) 1
k for k′ = k − 1.

1Again, generally Lebesgue or counting.

64

By combining this density with (3.7) we can write the acceptance probability

for birth moves as min(1, αbirth) where the acceptance ratio is

αbirth =
cdeath(k + 1)

cbirth(k)
· p(k + 1, (z1:j−1, z

′, zj:k)|R, θ)
p(k, z1:k|R, θ)︸ ︷︷ ︸
posterior ratio

· 1

qθ(z′|zj−1:j)
.

As noted earlier, the path posteriors need only be computed up to a nor-

malizing constant as we can see that this constant will cancel in the relevant

ratio. Given the particular form of the path posterior we can write the ratio

of these densities as

A =



µ(z′)

µ(z1)
fθ(z1|z′) if j = 1,

fθ(z
′|zk) r(z′)
r(zk)

if j = k + 1,

fθ(z
′|zj−1) fθ(zj |z′)
fθ(zj |zj−1)

otherwise.

Similarly, the probability of accepting a death move is min(1, αdeath) where

we can obtain the ratio associated with this probability from the reciprocal

of the birth move, i.e.

αdeath =
cbirth(k − 1)

cdeath(k)
· p(k − 1, (z1:j−1, zj+1:k)|R, θ)

p(k, z1:k|R, θ)
· qθ(zj |zj−1, zj+1)

1
.

The simplifications necessary to write the posterior ratio for this acceptance

probability follow directly from those in the birth step.

Reversible jump with Jacobians

Finally, in order to be complete we should also mention an alternative con-

struction of the previous Markov chain which is based on dimension jumping

moves and their associated Jacobians. This construction, used extensively

by [Green, 1995, 2003], is so closely associated with the reversible jump pro-

cedure that they are often thought to be interchangeable [see e.g. Geyer,

2010]. We will see shortly that, although this construction is quite useful in

65

deriving reversible jump algorithms, it is unnecessary in this situation.

We will consider as above a state space that is a disjoint union
⋃
k≥1Zk

where letting Z ⊆ Rd, we can see that Zk is a Euclidean space of dimension

kd. The equilibrium distribution of the Markov chain is then specified by

an unnormalized distribution h(x), which in this case is proportional to the

posterior p(k, z1:k|R, θ) with x = z1:k. Next, we will consider a collection

of elementary moves such that with probability ci(x) the ith such move is

proposed between spaces spaces Zmi and Zni . As a result, ci(x) is only

non-zero for x ∈ Zmi ∪ Zni .
Now, let Ui and Vi be Euclidean spaces such that Zmi ∪ Ui is of the

same dimension as Zni ∪ Vi. This is the so-called “dimension matching”

condition. We can now define a proposal distribution corresponding to this

move such that qi(·|x) is defined over Ui when x ∈ Zni and defined over

Vi for x ∈ Zmi . Finally, we must specify a function gi that maps points

in Zmi ∪ Ui to points in Zni ∪ Vi and vice-versa. We also require that gi

is its own inverse. Given the current state of the chain x, the ith proposal

then proceeds by generating u ∼ qi(·|x) and proposing (y, v) = gi(x, u).

Intuitively, u represents the random numbers that must be generated in

order to move from x to y, and v the random numbers needed to move back.

Meanwhile, gi is the transformation that takes these random numbers into

the actual state-space. Given this process, the acceptance ratio is given by

r((x, u), (y, v)) =
ci(y)h(y) qi(v|y)

ci(x)h(x) qi(u|x)
· det(∇gi(x, u)). (3.10)

Here we can see the Jacobian of the mapping gi in the final term.

This procedure was shown by [Green, 1995] to satisfy the conditions

outlined briefly in Section 3.2 for defining a proper trans-dimensional Markov

chain whose invariant distribution is our desired target. We can now consider

what happens were we to apply this construction to the problem of Bayesian

policy search. Let the ith update be a move between Zk and Zk+1 which

either gives birth or kills a component at the end of the chain. Without

loss of generality we will assume x is of dimension k. We can easily see

that this will correspond to a birth move with a ratio of ci terms given by

66

cdeath(k+1)/cbirth(k) and a ratio of posterior terms appears exactly as it did

in the previous section. We can also see that the proposal can be written as

q(u|x) = q(u|zk) where u = z′ corresponds to the newly proposed terminal

state. As a result, due to the dimension matching condition we know that

v must be zero-dimensional, and the ratio of proposals is 1/qi(u|zk), again

just as in the previous section. Finally, we can see that gi for this move is

just the identity, as a result its Jacobian will be given by the identity and

our full acceptance ratio appears exactly as it did above.

3.3.2 Fixed-dimensional updates

Again, let (θ, k, z1:k) denote the current state of the chain. We can now

propose a standard (fixed dimensional) move wherein we update all or a

subset of the components z1:k using Metropolis-Hastings or Gibbs moves.

There are many design possibilities for these moves. In general, one should

block some of the variables so as to improve the mixing time of the Markov

chain, where we can randomly select blocks to update or systematically

update all blocks at every iteration. For some block of variables indexed by

a through b we can consider a Metropolis-Hastings scheme with proposals

Z ′a:b ∼ qθ(·|za−1:b+1) to update this block. We can then write the acceptance

probability for this update as min(1, αupdate) where the associated ratio is

given by

αupdate =
p((z1:a−1, z

′
a:b, zb+1:k)|k,R, θ)

p(z1:k|k,R, θ)
· qθ(za:b|(za−1, z

′
a:b, zb+1))

qθ(z
′
a:b|za−1:b+1)

.

Similar to the birth/death moves of the previous subsection we can see that

the posterior ratio simplifies to

A =
fθ(z

′
a|za−1)

∏b
n=a fθ(z

′
n+1|z′n)

fθ(za|za−1)
∏b
n=a fθ(zn+1|zn)

for a > 1 and b < k and for symmetric proposals q(za:b| · · ·). For a =

1 we can see that the initial transition density will be replaced with the

initial state density. For b = k the final transition will be replaced with the

67

observation or reward “density”.

In designing the fixed-dimensional proposal distributions there is a wealth

of possible strategies; see e.g. the recent work of [Fearnhead, 2010] for an ex-

tensive overview. The simplest approach to updating the state z1:k relies on

single-site updates which only update a single component zn. In some situa-

tions, such as discrete state and action spaces (in an analogy to approaches

taken with HMMs), it can be possible to implement a Gibbs sampler which

samples directly from the conditional distribution p(z′n|zn−1, zn+1). Other

approximations may also prove feasible when the full conditional cannot

be sampled from, such as those based on a Taylor expansion of the log-

conditional. Although easy to implement, as noted by Fearnhead (among

many others) such single-site moves can often exhibit slow mixing when there

is strong temporal dependence in the state process. We will come back to

this point later in Section 3.4.2. Alternatively, sampling longer blocks of

variables can alleviate some of these concerns, although the end-points be-

tween two blocks can often have similar difficulties. At the other end of the

spectrum, it is often possible to sample the entire state sequence using its

full conditional as is the case with HMMs and LDSs; again, see [Fearnhead,

2010] for further details.

Finally, conditioned on the current trajectory (k, z1:k) we can propose a

new set of policy parameters θ′ from the proposal distribution q(·|θ). These

new policy parameters are then accepted with probability min(1, αparam)

where

αparam =
p(θ′)

p(θ)
· p(k, z1:k|R, θ′)
p(k, z1:k|R, θ)

· q(θ|θ
′)

q(θ′|θ) .

3.3.3 Preliminary experiments

In this section we now present preliminary experiments illustrating the use

of MCMC algorithms for Bayesian policy search. It should be noted from

the outset, however, that these results are mainly for illustrative purposes

and will show both some of the strengths and weaknesses of the proposed

approach. In the next section we will present additional modifications to ad-

68

dress some of these weaknesses, as well as more comprehensive experiments.

We first consider a linear-Gaussian MDP model, similar to that in Sec-

tion 2.3, namely

• state and action spaces X = A = R2;

• zero-mean, Gaussian initial states µ(x1) = N (x1; 0, σ2
1I);

• linear-Gaussian transitions f(xn+1|xn, an) = N (xn+1;xn + an, σ
2
2I);

• squared-exponential rewards r(x) = exp(−0.5 ‖x−m‖2/σ2
3).

In a departure from the previous section, however, we define the following

stochastic policy

An = (w + δn)

[
cos(θ + ωn)

sin(θ + ωn)

]
.

Here we have defined a policy controlled only via the parameters θ ∈ [0, 2π];

w is a small constant step-size; δn and ωn are small uncontrolled, normally

distributed perturbations. Intuitively, this policy corresponds to choosing

a direction θ in which the agent will walk. While unrealistic from a real-

world perspective, this allows us a method to easily evaluate and plot the

convergence of our algorithm. An illustration of this space can be seen in

Figure 3.1 where m = [1, 1]T .

The primary choices affecting the performance of this algorithm con-

cern the proposal distributions for the birth moves, the fixed-dimensional

updates, and finally the parameter updates. To a lesser degree the prior

also affects the algorithm performance, however for this model we made the

straightforward choice of an uninformative, uniform prior over [0, 2π]. For

birth moves with 1 < j < k we propose a new state normally distributed

equidistant between the two neighboring points; for j = 1 or j = k we sam-

ple directly from the path prior. We used single-site moves to update the

fixed-dimensional path, where the proposals were “smoothed” towards the

current path θ, plus some additional Gaussian noise. Finally, the parame-

ter updates were simple random walk Metropolis-Hastings with a Gaussian

kernel.

Not only can we use this to sample from the desired posterior, and

thus sample proportional to the expected reward, but in some situations

69

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3.1: Illustration of the 2-dimensional angular-policy space used
to demonstrate of reversible jump policy search. Ten sample
points are shown distributed according to µ and the contour
plot corresponds to the reward function r. The red line denotes
the policy parameterized by some angle θ, while a path is drawn
in blue sampled from this policy.

we can use it to identify the optimal parameters. We can easily see that

the distribution in question is unimodal and symmetric, and as a result the

mean and the mode coincide. In Figure 3.2 we show the convergence of this

approach. We also compare against the PEGASUS policy search method

of [Ng and Jordan, 2000]. Here we see that the Bayesian method is able to

mix over the space more quickly and quickly settles on the optimal policy

parameters. We found that this was largely due to its ability to move more

quickly over regions where the gradient is close to zero.

70

It is crucial to note however that the MCMC method required substan-

tially more tuning: we found that the birth and death moves were tricky

to obtain proper mixing due to the high correlations between subsequent

states. We should also point out that the particular fixed-dimensional path

updates used in this section required significant prior knowledge of the pol-

icy’s behavior. This last point is fairly important in that we can look at

the MCMC method developed in this section as less of a “black-box” MDP

solver and more of a recipe for methods which identify regions of high re-

ward, albeit a recipe that requires more user knowledge in order to achieve

better performance. In the next section we will introduce a number of ex-

tensions to the basic reversible jump procedure in order to address these

concerns.

3.4 Improved inference strategies for reversible
jump policy search

In the previous section we introduced an MCMC procedure to sample the

components of a parameterized policy with probability proportional to the

expected rewards of that policy. The behavior of this sampler was, however,

highly dependent on the choice of proposal distribution, with little advice

given on how to select this proposal. In this section we will introduce a

number of modifications to both the sampler itself and the likelihood model

associated with the MDP in order to improve the behavior of the sampling

procedure.

3.4.1 Utilizing the entire reward sequence

In Section 2.1 we introduced an observation model p(R|k, zk) such that the

probability of our “dummy observation” R = 1 is given by the reward at

the end of the latent chain, i.e. r(zk). This formulation was crucial to the

development of the efficient EM-based procedures in this chapter, as well as

the earlier work of as [Toussaint and Storkey, 2006]. In the case of sampling-

based procedures, however, we can greatly improve upon earlier methods by

instead using the entire sequence of rewards {r(zn)}n≤k.

71

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
number of samples taken from transition-model

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
o
lic

y
 p

a
ra

m
e
te

r
(t

h
e
ta

)

Evolution of policy parameters against transition-model samples

rjmdp
pegasus
optimal

Figure 3.2: Convergence of reversible jump policy search compared
against PEGASUS for the preliminary angular-policy problem.
and our Bayesian policy search algorithm Both algorithms start
from θ = 0 and converging to the optimum of θ∗ = π/4. The
plots are averaged over 10 runs. For the reversible jump algo-
rithm we plot samples taken directly from the MCMC algorithm
itself: plotting the empirical average would produce an estimate
whose convergence is almost immediate, but we also wanted to
show the “burn-in” period. For both algorithms lines denoting
one standard deviation are shown and performance is plotted
against the number of samples taken from the transition model.

72

In fact, the use of rewards only at the end of the chain can prove harmful

in terms of the mixing properties of the underlying Markov chain. Consider,

for example an MDP with two regions of high immediate reward but areas

of relatively low reward between them. We can then consider what happens

when the current state of the Markov chain has zk landing in one of these

regions and a birth proposal is made after step k with z∗ leaving this region.

The acceptance probability will be given by αbirth ∝ γr(z∗)/r(zk) ≈ 0,

where we have ignored those terms not contained in the posterior ratio.

In this situation, the regions of high reward will be much higher than the

surrounding low reward regions and as a result the probability of accepting

such a birth move will be quite low. Often the probabilitiy of accepting

birth moves (and respectively death moves) will become unacceptably low

and lead to very slow mixing of samples from the state space, under which it

may prove very difficult to distinguish between “good” and “bad” policies.

An illustration of this is shown in Figure 3.3.

Intuitively, Figure 3.3 suggests that the reason behind this poor mixing

is that we are not using enough of the reward information when deciding

whether to accept or reject proposals. In order to alleviate this problem, we

will instead introduce an alternative likelihood model that depends on the

entire path, namely one that is given by the sum of undiscounted rewards,

p(R = 1|k, z1:k) =
k∑

n=1

r(zn). (3.11)

Again, just as in Section 2.1, the actual value of the dummy observation

R = 1 is arbitrary, and as a result we will continue to drop the value of this

“observation”. We also emphasize the functional form of r is exactly the

reward model given in the MDP specification. We are only introducing a

dummy observation R with likelihood given by (3.11) in order to solve this

problem using MCMC. Now, given the newly introduced likelihood we can

make the following claim:

Proposition 4. Given the observation model defined in (3.11) the marginal

likelihood p(R = 1|θ) of the policy parameters under these observations is

73

Figure 3.3: Illustration showing the poor mixing properties that can
occur when only using rewards at the end of a chain. Let the
green circular areas denote regions of high reward with the black
dots denoting the current state of the chain. Consider then
proposed states given by the red dots. If only one such dot is
proposed, this proposal will have very low probability of being
accepted. If the two dashed lines represent two alternative poli-
cies then it becomes difficult to distinguish these policies (and
hence sample them) based only on the current state. Note that
one of these policies is “good” in that it passes through the sec-
ond high reward area whereas the other policy is “poor” and
hence should be sampled less.

equivalent to the expected reward J(θ).

Proof. Just as we did when proving Proposition 1 we can start from the

expected reward and rearrange the terms that depend on γ,

J(θ) = (1− γ)

∞∑
n=1

γn−1

1− γ

∫
r(zn) p(z1:n|θ) dz1:n.

By using the series expansion of γn/(1− γ) we can write this as

= (1− γ)

∞∑
n=1

(∞∑
k=n

γk−1

)∫
r(zn) p(z1:n|n, θ) dz1:n

74

and finally, by changing the order of summation, we obtain the marginal

posterior as desired

= (1− γ)
∞∑
k=1

γk−1
k∑

n=1

∫
r(zn) p(z1:n|θ) dz1:n

=

∞∑
k=1

∫ (k∑
n=1

r(zn)

)
p(k, z1:k|θ) dz1:k.

It is interesting to note that equality now holds for this formulation, rather

than being proportional as in the previous formulation. Further, we must

emphasize that although the discount factor still appears in the time prior

p(k), the sum of rewards used in formulating this new likelihood model is

undiscounted.

This reformulation allows us to introduce the new target distribution

p(k, z1:k, θ|R) ∝ p(R|k, z1:k) p(k, z1:k|θ) p(θ), (3.12)

which we will use throughout the rest of this chapter. Just as in the previous

section we can easily see that this obtains the desired marginal target, due to

Proposition 4. Finally, we can return to the thought experiment introduced

above wherein the current state of the Markov chain lies in a region of high

reward and a proposal is made which leaves this region. In this case the

resulting acceptance probability will be

αbirth ∝ γ
r(z1) + · · ·+ r(zk) + r(z∗)

r(z1) + · · ·+ r(zk)
≈ γ.

In other words, the probability of accepting a new state outside of the region

of high reward will be controlled primarily by the discount factor. This will

in turn lead to better mixing, a property that we will see in later experiments.

We should also note that this same approach can be used when sampling

in general. For example, [Vlassis and Toussaint, 2009] extend the EM pro-

cedure of the previous chapter to the Monte Carlo setting, and here they in

parallel develop a similar approach to the problem.

75

3.4.2 Explicit noise variables

While theoretically sound, sampling from (3.1) or (3.12) often requires a

carefully tuned proposal distribution in order to accurately explore the

posterior. In many cases the policy parameters θ and the sequence of

state/action pairs z1:k (as well as the individual steps within that sequence)

will be highly correlated, resulting in a Markov chain which mixes very

poorly over these variables. Blocking the variables can improve the mixing

time of the Markov chain, but this does not completely alleviate the prob-

lem as the blocks themselves can exhibit high correlations, especially at the

end-points of each block. Here, however, we adopt an even more efficient

sampling strategy.

In many models both the transition model and the policy take the form

of deterministic functions of the current state and action as well as some

additional vector noise variables. We will write these models as

An = πθ(xn, φn),

Xn = f(xn−1, an−1, ψn)

i.e. where εn = (φn, ψn) denotes the noise (i.e. stochastic) components dis-

tributed according to

p(εn|θ) = p(ψn) p(φn|θ).

Only by not conditioning on the noise variables εn do we obtain the standard

stochastic transition models; conditioned on these variables the system is

entirely deterministic. Finally, under these assumptions the initial-state is a

special case, however it becomes notationally convenient to consider this as

“fully stochastic” and write ψ1 = x1. Here we allow the noise φn to depend

upon θ so that the policy can control exploratory noise. In more general

settings it might also make sense to let x1 depend upon θ, but here we

assume that the initial state is uncontrolled. An illustration of this model

can be seen in Figure 3.4.

Under these circumstances, the strong correlation exhibited by zn and

76

X1 X2
. . . XK

A1

φ1

ψ1

A2

φ2

ψ2

AK

φK

ψK

θ

K

Figure 3.4: Graphical model depicting the use of auxiliary noise vari-
ables. Here the square, shaded nodes are deterministic given
their parents.

zn+1 is mostly due to the deterministic components. We remind the reader

that it is this strong correlation that causes any MCMC algorithm to mix

poorly. We can limit this problem by sampling ε1:k rather than the state/path

terms. This is an idea closely related to the techniques discussed by [Pa-

paspiliopoulos et al., 2003]. Under this re-parameterization, the new target

distribution is

p(k, ε1:k, θ|R) ∝ p(R|k, z1:k) p(k, ε1:k|k, θ). (3.13)

Although we have eliminated the need to sample zn, we must still calculate

it in order to compute the reward at time n; this calculation is, however,

deterministic given zn−1 and εn.

The reformulation mitigates the mixing problems due to the strong de-

pendencies between θ and z1:k as well as between zn+1 and zn that were

77

caused by the deterministic components of the policy and transition den-

sities. The dependencies between the variables in this new artificial joint

distribution are purely due to the reward function r and in many cases will

be comparatively weak.

Apart from its decorrelating effect, this technique has a secondary benefit

as a variance reduction technique. The noise terms ε1:k can act as common

random numbers, in a way that is closely related to the idea of fixing random

seeds in policy search [Ng and Jordan, 2000]. In particular, we can fix the

noise variables for a predetermined number of MCMC moves updating the

policy. In doing this, both θ(i) and θ(i−1) will depend on the same random

seeds (noise terms). Consequently, the variance of the policy update will

be reduced. This is a direct consequence of the fact that the variance of

the difference of two estimators based on Monte Carlo simulations is equal

to the sum of the individual variances of each estimator minus their joint

covariance [see Spall, 2005].

3.5 Marginal Optimization

So far we have provided a method for sampling from a posterior distribu-

tion, either (3.1) or (3.12), that exhibits a marginal over policy parameters

proportional to the expected reward under those parameters. Our goal,

however, is often to estimate the maximum θ∗ = arg maxθ J(θ). As noted

earlier, if J(θ) happens to have a strongly dominant and highly peaked mode

around the global maximum θ∗, we can justify sampling from p(k, z0:k, θ|R)

and deriving a point estimate of θ∗ by averaging the resulting sampled pa-

rameters. However, in general the assumption of such a favorable J(θ) is

unrealistic. If J(θ) is multimodal or fairly flat then this approach will yield

poor estimates.

Instead, in this section we will present two modifications to address this

problem. The first uses annealing to concentrate the samples directly on

the modes. This step is, however, complicated by existence of the latent

data: we have to ensure that we properly anneal our distribution in the

marginal setting. We will then introduce “clean-up” step involving clus-

78

tering that helps in the event of multiple modes with similar performance

characteristics.

3.5.1 Annealing

We will now consider the following marginal density

pν(θ) ∝ J(θ)ν p(θ).

For large exponents ν the probability mass of this distribution will concen-

trate on the global maximum θ∗. If we could sample from pν(θ), then the

generated samples would allow us to derive a much better point estimate of

θ∗. Note however that this is not as simple as it might seem at first glance.

For example raising the joint density in (3.12) to the power of ν will not

result in a distribution with this desired marginal.

A method for generating samples from marginal distributions of this

form was proposed by Müller et al. [1998, 2004] in the context of optimal

design and independently in [Doucet et al., 2002] in the context of marginal

maximum a posteriori estimation. The trick is to define an artificial distribu-

tion jointly over multiple simulated trajectories. To simplify notation let us

first define ζj = (kj , z0:kj) to represent one simulated trajectory. For integer

values of ν we can then define the following artificial target distribution

pν(θ, ζ1:ν |R) ∝ p(θ)
ν∏
j=1

p(R|ζj) p(ζj |θ). (3.14)

By jointly marginalizing over the ζj for each of the j ≤ ν different trajectory

instantiations we can easily to verify that this distribution does indeed admit

the desired marginal distribution pν(θ) ∝ J(θ)ν p(θ). However, because the

modes of J(θ)ν will typically be narrow and widely separated for large ν,

sampling from this distribution using Markov chain Monte Carlo techniques

directly is difficult.

We therefore, we take a simulated annealing approach [as in Doucet

et al., 2002, Müller, 1998, Müller et al., 2004] in which we start sampling

79

from pν with ν = 1, and then slowly increase ν over time according to an

annealing schedule. Increasing ν slowly enough allows the chain to efficiently

explore the whole parameter space before becoming more constrained to the

major modes for larger values of ν.

One limitation of Equation (3.14) is that the annealing schedule is limited

to full integer steps. However, we can further generalize this approach to

allow for a real valued annealing schedule by defining the modified target

distribution

pν(θ, ζ1:dνe) ∝ p(θ)
(bνc∏
j=1

p(R|ζj) p(ζj |θ)
)
p(R|ζdνe)ν−bνcp(ζdνe|θ), (3.15)

where ν is now real valued and bνc and dνe denote the integer valued floor

and ceiling of ν. For integer values of ν, this distribution again admits the

marginal pν(θ) ∝ J(θ)ν p(θ) as before. While this does not hold for the

intermediate distributions with real valued ν, these distributions provide

a smooth bridge between the integer steps. This allows for more gradual

annealing, thereby reducing the variance of the overall sampler.

While in theory we should let ν approach infinity, in practice this is

not computationally feasible. Instead we can choose an annealing schedule

that plateaus at a final integer value νmax, at which point the chain is run

for another M iterations. The last M samples, marginally distributed from

pνmax(θ), can then used as the basis of a point estimate of θ∗.

3.5.2 Clustering

If J(θ) has a unique maximum and νmax is sufficiently large, the final samples

from pνmax(θ) will be concentrated around θ∗. In this case averaging the L

final samples can provide a good estimate of θ∗. In practice however, it

is possible that pνmax still has multiple modes with significant probability

mass. In this case simple averaging can lead to a poor estimate.

To provide a better point estimate under these circumstances we can

cluster the final samples and use the center of the largest cluster as our

estimate of θ∗. For the clustering we use simple agglomerative clustering

80

using average linkage (UPGMA). Other techniques such as for example mean

shift clustering [Cheng, 1995] could be used instead. Note however that the

popular K-Means algorithm is not suited for this purpose as it tends to split

high density areas into multiple clusters.

3.6 Experiments

3.6.1 Linear-Gaussian models

We first experiment with linear-Gaussian transition models of the same form

as those in Section 2.3, i.e.

f(xn, un) = Axn +Bun +N (0,Σ), and

πθ(xn) = Kxn +m for θ = (K,m).

This model is particularly interesting if we allow for multimodal rewards,

as this will in general induce a multimodal expected reward surface. Fig-

ure 3.5 contrasts samples taken from both the non-annealed and annealed

distribution (with annealing factor ν = 20) on a model with 1D state- and

action-spaces. In this example we can see that the simple approach of aver-

aging samples {θ(i)} results in a very poor estimate of the policy parameters,

whereas both clustering and annealing are correctly able to recover the op-

timum.

3.6.2 Particles with force-fields

For a more challenging control problem we chose to simulate a physical sys-

tem in which a number of repellers are affecting the fall of particles released

from within a start region. The goal is to direct the path of the particles

through high reward regions of the state space in order to maximize the

accumulated discounted reward. The four-dimensional state-space in this

problem consists of a particle’s position and velocity (p, ṗ) for p ∈ R2. Ac-

tions consist of repelling forces acting on the particle. Additionally, the

particle is affected by gravity and a frictional force resisting movement.

81

Non-annealed samples Annealed samples

Averaged Clustered Annealed

Figure 3.5: Policy parameters sampled from a 2-dimensional linear-
Gaussian MDP with multimodal rewards. Shown in the top
row are samples both with annealing (right) and without (left).
Simple averaging of the sampled parameters leads to the esti-
mates given by the red triangle, whereas the green diamonds are
the point estimate found by clustering these same samples. Also
shown in the second row are sample trajectories under these dif-
ferent estimates where the y-axis gives the discrete time index.

The deterministic policy is parameterized by k repeller positions ri and

strengths wi with a functional form given by

πθ(p, ṗ) =

k∑
i=1

wi
p− ri
‖p− ri‖3

.

That is, each repeller pushes the particles directly away from it with a force

inversely proportional to its distance from the particle. In our experiments

82

N

N
Figure 3.6: Example of the particle control problem with force-fields.

Shown are contours of the immediate reward, a an example
policy—not necessarily optimal—consisting of 3 repellers, and
a number of trajectories sampled from this model.

the particle’s start position is uniformly distributed within a rectangular

region. At each time step the particle’s position and velocity are updated

using simple deterministic physical forward simulation and a small amount

of Gaussian transition noise is added to the particle’s velocity. See Figure 3.6

for an example of this model.

In Figure 3.7 we use this particle model to show the benefits of the

summed likelihood formulation (3.12) over the target distribution which

only uses rewards at the last time step (3.1). We employ the noise variable

parameterization and the annealing and clustering techniques discussed in

Sections 3.4.2 and 3.5 in both samplers. The reward model used in this

example is composed of multiple circular reward zones. A high constant

reward is awarded inside these zones and close to no reward outside. Note

83

that the discontinuous and multimodal nature of this reward surface makes

for a very challenging control problem. In this and the following experiments

we are searching for the optimal placement and strengths of two repellers,

resulting in a 6 dimensional control problem. In our implementation we are

updating the 6 policy components in 4 blocks for the positions and strengths

of the two repellers.

When evaluating the reward at the last step only, the sampler has dif-

ficulties crossing the gaps between the reward zones, as indicated by the

relatively low acceptance ratios of birth and death moves, see the second

plot of Figure 3.7. This leads to the sampler getting stuck in local minima,

resulting in poor policy estimates. The summed rewards formulation on the

other hand allows for better mixing over path lengths, making it more likely

to find the high reward zone at the bottom. This ultimately results in much

better policies. Note how the policy found using our summed rewards ap-

proach, visualized in the bottom-right of this figure, uses the two repellers

to not only direct the particles towards the high reward zone but to also

slow them down inside this zone in order to accumulate as much reward as

possible.

Figure 3.8 compares the algorithm described in this paper with the PE-

GASUS technique of [Ng and Jordan, 2000] using numerically computed

gradients. In particular we are interested in learning using deterministic

policies, and PEGASUS can be used directly in this setting. We compared

10 runs of each algorithm on the particle system model shown in the bottom

two subplots, where the reward model is a single Gaussian in position-space.

Even though the reward model is unimodal, the resulting expected reward

surface is highly multimodal: two such modes are displayed in the bottom

two subplots. The poor performance and high variance of PEGASUS is

mainly due to these local maxima, as well as plateaus in the reward surface.

Finally, Figure 3.9 uses the same problem from the previous experiment

to compare the sampler based on the noise-variable formulation with the

basic reversible jump approach introduced earlier. By examining the result-

ing policy estimates we can see that the proposed reformulation significantly

outperforms the previous method on this model. This results from the older

84

Repeller model Acc. rates Exp. rewards

Summed Last step

Figure 3.7: Comparison of Bayesian policy search using the summed
and last-step likelihoods. The problem, shown in the top left,
features multiple reward zones, with the bottom-most zone
yielding a 50 times higher reward than the others. We also dis-
play the average acceptance ratios and compare the expected
rewards for the policies found using 10 runs of each sampler.
The final two plots visualize two of the computed policies; one
for the summed reward formulation (bottom-left) and one when
only evaluating the reward at the last step (bottom-right).

85

0.0 0.5 1.0 1.5 2.0 2.5
number of samples 1e7

0

5

10

15
Ex

pe
ct

ed
 re

w
ar

d,
 J

(θ
)

Auxiliary noise RJMDP
PEGASUS

“bad” policy “good” policy

Figure 3.8: Comparison of Bayesian policy search with PEGASUS on
the repellers model averaged over 10 runs, where error-bars dis-
play one standard deviation. The x-axis displays the number
of samples taken from the transition model. Also shown are a
“bad” local maxima found by PEGASUS, and a “good” policy
found by our sampler.

method’s poor mixing over trajectories, as evidenced by the extremely low

acceptance rate for path updates. In order to explore the space of trajec-

tories at all, this method therefore needs to shrink trajectories using death

moves and subsequently re-grow them using birth moves. However, the ac-

ceptance ratios for such birth and death moves are themselves significantly

lower than for our proposed sampler, rendering this way of mixing in tra-

jectory space inefficient as well.

86

standard aux.noise0

5

10

15

20

Ex
pe

ct
ed

 re
w

ar
d,

 J
(θ

)
Final expected reward estimates

0 2000 4000 6000 8000 10000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 ra

tio

Mean acc. ratio for birth/death moves

Standard RJMDP
Auxiliary noise RJMDP

0 2000 4000 6000 8000 10000
Iteration

0.0
0.2
0.4
0.6
0.8

Ac
ce

pt
an

ce
 ra

tio

Mean acc. ratio for update moves

Standard RJMDP
Auxiliary noise RJMDP

Figure 3.9: Comparison between the explicit noise variable approach
and the basic MCMC approach on the particle system model.
The left-most plot shows the expected rewards for the final poli-
cies found by both methods across 10 runs. The right plots dis-
play the averaged acceptance ratios for birth and death moves
and the acceptance ratios for trajectory update moves.

3.7 Chapter summary and conclusions

In this chapter we presented what was at the time the first application of

reversible jump MCMC, and MCMC in general, to the problem of policy

search. We then provide preliminary results showing that this method can

be effective in practice. However, the proposal mechanism necessary to

obtain these results required careful hand-tuning which is not practical in

many problems of interest.

We then presented several important improvements to this approach,

specifically targeting the problem of poor mixing of the Markov chain.

The experiments provide clear evidence that the proposed modifications

are needed to attack higher-dimensional stochastic decision problems. In

particular, the experimental results show that significant improvements are

obtained when incorporating more reward information into the likelihood

87

model (Figure 3.7) and when using the explicit noise variables to break

state-space dependencies and reduce variance (Figure 3.9). It is also clear

that the proposed simulated annealing and clustering techniques allow us to

find better point estimates of the optimal policy (Figure 3.5). Finally, we

observed favorable performance of the proposed approach in comparison to

state-of-the-art techniques such as PEGASUS (Figure 3.8). As long as there

is structure in the state space, one can adopt standard Rao-Blackwellization

and blocking techniques to efficiently carry out inference in the Bayesian

network. The main difficulty here lies in dealing with the dimensionality

of the policy space, where often there seems to be much less structure to

exploit.

Finally, this chapter shows that this method compares favorably to

gradient-based methods for models with with many modes and plateaus.

However, in order to ensure the proper mixing of the Markov chain we must

be willing to accept a sizeable number of rejection steps, which may prove

inefficient as an optimization mechanism. As a result, in Chapter 6 we will

present another gradient-free mechanism that is more sample efficient. It

may prove that the benefits of the algorithms presented in this chapter are

more beneficial due to their Bayesian qualities, e.g. as a way to incorporate

prior information as well as provide a full “posterior” over the policy pa-

rameters. This can be useful, for example, in situations where the models

are estimated from data as well, and their is also underlying uncertainty in

these measurements.

88

Chapter 4

Regularized Least Squares

Temporal Difference learning

with nested `2 and `1

penalization

In previous chapters we have focused on the problem of policy search by

directly parameterizing the control policy of an MDP and optimizing these

parameters in order to maximize the expected reward under that policy. In

this chapter we will consider an indirect—although perhaps more classical—

approach to parameterizing the policy that is instead in terms of the value

function. In other words we will instead consider the task of estimating

a function which returns the value of being in some state x ∈ X . In this

chapter, we also attack the problem of reinforcement learning (RL), wherein

rather than assuming a model of the control task, we can instead only sample

states, actions, and rewards from the underlying MDP.

In the setting of RL, least-squares temporal difference learning (LSTD)

as introduced by [Bradtke and Barto, 1996] is a very popular mechanism for

approximating the value function V π of a given policy π. More precisely, this

approximation is accomplished using a linear function space F spanned by

89

a set of k features {φi}ki=1. Here, the choice of feature set greatly determines

the accuracy of the value function estimate. In practice, however, there may

be no good, a priori method of selecting these features. One solution to this

problem is to use high-dimensional feature spaces in the hopes that a good

set of features lies somewhere in this basis. This introduces other problems,

though, as the number of features can outnumber the number of samples n ≤
k, leading to overfitting and poor prediction. In the linear regression setting,

regularization is commonly used to overcome this problem. The two most

common regularization approaches involve using `1 or `2 penalized least-

squares, known as Lasso or ridge regression respectively [see e.g. Friedman

et al., 2001]. The approach of Lasso is of particular interest due to its feature

selection property, wherein the geometric form of the `1 penalty tends to

encourage sparse solutions. This property is especially beneficial in high-

dimensional problems, where we have many more features than samples,

as they allow solutions to be expressed as a linear combination of a small

number of features.

The application of the Lasso to the problem of value function approxi-

mation in high dimensions would thus seem to be a perfect match. However,

the RL setting differs greatly from regression in that the objective is not to

recover a target function given its noisy observations, but is instead to ap-

proximate the fixed-point of the Bellman operator given sample trajectories.

The addition of this fixed-point creates difficulties when attempting to ex-

tend Lasso results to the RL setting. Despite these difficulties, one particular

form of `1 penalization has been previously studied, both empirically [e.g.,

Johns et al., 2010, Kolter and Ng, 2009] and theoretically in [Ghavamzadeh

et al., 2011], with interesting results.

In this chapter, we consider the two-level nested formulation of LSTD

used by [Antos et al., 2008] and by [Farahmand et al., 2009]. Under this

formulation, the first level optimization is defined by the projection of a

Bellman image onto the linear space F , and the second level accounts for

the fixed point part of the algorithm. This formulation allows us to define

a wide range of algorithms depending on the specific implementation of the

projection operator and the fixed point step. In particular, we will discuss

90

a number of regularization methods for LSTD, two based on `2 penalties

(one of which has been introduced by Farahmand et al.), one based on an `1

penalized projection (as introduced by Kolter and Ng), and finally we will

introduce a novel approach which solves the problem via two nested opti-

mization problems including an `2 and an `1 penalty (L21). Unlike previous

methods using `1 regularization in LSTD, this new approach introduces the

`1 penalty in the fixed point step and this allows us to cast the problem as

a standard Lasso problem. As a result, we do not need to develop any spe-

cific method to solve the corresponding optimization problem—as needed by

Kolter and Ng, where a specific implementation of LARS has been defined—

and we can apply general-purpose solvers to compute its solution. This

additional flexibility also allows us to perform an explicit standardization

step on the data similar to what is done in regression. We show in the

experiments that all the methods using `1 regularization successfully take

advantage of the sparsity of V π and avoid overfitting. Furthermore, we show

that, similar to regression, standardization can improve prediction accuracy,

thus allowing L21 to achieve a better performance than LARSTD of Kolter

and Ng.

Finally, we should note that in this chapter we will focus on the prob-

lem of computing the value function as a method of policy evaluation, and

consider regularization schemes within this paradigm. In order to apply

these methods to reinforcement learning tasks we would need to extend

this approach to learning state-action value functions in order to perform

policy iteration; see e.g. the least-squares policy iteration (LSPI) work of

[Lagoudakis and Parr, 2002]. However, many of the same approaches can

be directly translated to this LSPI task, and we will focus on the simpler

task of policy evaluation.

4.1 Preliminaries

We again consider the standard RL framework introduced in Section 1.1.

The value function we are interested in learning maps x to its long-term

91

expected value

V π(x) = E
[∞∑
t=0

γtr(xt)
∣∣x0 = x, π].

We can also define this quantity as the unique fixed-point of the Bellman

operator V π = T πV π, where the operator T π is defined as

(T πV)(x) = r(x) + γ

∫
X
p(dx′|x, π(x))V (x′)

or more concisely as T πV = r + γP πV , where P π denotes the transition

kernel induced by the policy and transition models. When both r and P π

are known, this quantity can be solved for analytically, however we will

consider the situation that these quantities are either unknown, too large to

evaluate, or both.

Rather than directly computing the value function, we will instead seek

to approximate V π with a space F consisting of linear combinations of k

features φ : X → Rk and weights w ∈ Rk, i.e.

V π(x) ≈ φ(x)Tw.

However, note that even for some function V ∈ F the result T πV of applying

the Bellman operator to this value function will not necessarily lie in the

span of the basis φ. Instead, we will adopt the approach of LSTD and

approximate the resulting vector with the closest vector that does lie in F .

Let

‖f‖2ν =

∫
X
f(x)2ν(dx)

be the `2(ν)-norm of some function f with respect to the distribution ν. We

can then introduce a projection operator Π such that

ΠV (x) = φ(x)Tu∗ where

u∗ = arg min
u∈Rk

‖φTu− V ‖2ν .

92

By combining the Bellman and projection operators, we can write the LSTD

fixed-point as V̂ π = ΠT πV̂ π which, for V̂ π = φTw, can be written as

w = u∗w = arg min
u∈Rk

‖φTu− (r + γP πφTw)‖2ν . (4.1)

Note that here we have written the result of the projection step u∗w using

the subscript to denote that it is dependant on w, exactly because this step

corresponds to projecting the value function given by w. As an alternative to

the explicit fixed-point approach given above, one can adopt the approach of

[Antos et al., 2008] and write the value function as the solution V̂ π = φTw∗

to the following nested optimization problem

u∗w = arg min
u∈Rk

‖φTu− (r + γP πφTw)‖2ν

w∗ = arg min
w∈Rk

‖φTw − φTu∗w‖2ν . (4.2)

We will refer to the first problem as the projection step and the second as

the fixed-point step. Note, that as it stands, w∗ = u∗w is always a solution to

the fixed point minimization. However, by expressing the fixed point in this

way, we can in later sections of this chapter introduce methods for which we

only approximately fulfill this fixed point by introducing regularization.

We should also emphasize that the fixed-point step is not the same as

the projection of φTu∗w since u∗w itself depends on w, again as denoted by

the subscript. If we let H denote the fixed-point operator that arises from

the application of this second optimization problem then we can see that

V̂ π = H(ΠT πV̂ π). For the standard LSTD problem H is the identity, but

we will introduce variations of this operator later for which this is not the

case. Finally, this interpretation gives us a better picture of what is being

optimized by LSTD. Given some value function V̂ π = φTw we first apply

the Bellman operator, which may take this function outside of the space F
and then project this back down into the linear space. This is shown by

the solid lines in Figure 4.1. The optimization problem of LSTD is then

finding the value function that minimizes the distance between itself and

93

ΠTπφ(·)Tw

φ(·)Tw

Tπφ(·)Tw

F

Figure 4.1: A graphical illustration of the LSTD problem. Here we
see the Bellman operator which takes us out of the space F and
the orthogonal projection back onto this space.

its projected Bellman image ΠT πV̂ π as denoted by the dashed line in this

figure. See also [Antos et al., 2008] for more details.

Next, if we assume an n-length trajectory consisting of sampled tran-

sitions (xi, ai, ri, x
′
i) from the MDP of interest, we can define the sample

matrices

Φ =


φ(x1)T

...

φ(xn)T

 , Φ′ =


φ(x′1)T

...

φ(x′n)T

 , R =


r(x1)

...

r(xn)

 .
We can then write an empirical version of (4.1) and solve the projection step

as

u∗w = arg min
u∈Rk

‖Φu− (R+ γΦ′w)‖22

= (ΦTΦ)−1ΦT (R+ γΦ′w), (4.3)

and by setting w = u∗w can solve the fixed-point step,

w = (ΦT (Φ− γΦ′))−1ΦTR

= A−1b. (4.4)

94

Here we have defined A = ΦT (Φ − γΦ′) and b = ΦTR. While this solution

provides an unbiased estimate of the value function, it can perform quite

poorly when the number of samples is small in relation to the number of

features. This type of scenario often results in overfitting, i.e. where we

have more free parameters than observations, resulting in an overly complex

model that is able to fit the noise of the system rather than the underlying

system itself. In the next section, we examine various regularization methods

designed to avoid overfitting.

4.2 Regularized LSTD

In this section we describe four different regularization methods which apply

different penalty terms to the projection or to the fixed-point step introduced

in (4.2). In the first two such schemes we do not penalize the fixed-point

step, and we thus leave this step implicit. The final two schemes, however,

rely on penalizing both sub-problems. Ultimately we describe a method

which uses a mixture of `2 and `1 penalties, but that can be expressed as a

standard Lasso problem.

4.2.1 `2 penalization (L2)

The simplest form of regularization we can utilize involves adding an `2

penalty to the projection operator presented in (4.3), i.e.

u∗w = arg min
u∈Rk

‖Φu− (R+ γΦ′w)‖22 + β‖u‖22

= (ΦTΦ + βI)−1ΦT (R+ γΦ′w). (4.5)

Similar to (4.4), we solve for the fixed point w = u∗w and obtain:

w = (ΦT (Φ− γΦ′) + βI)−1ΦTR = (A+ βI)−1b. (4.6)

We also see here the standard LSTD components A and b, the only difference

with the original formulation being the addition of β along the diagonal of

A. As we note later, we found that the use of an `2 penalty of this form was

95

primarily useful as a method of regularizing the projection matrix in order

to avoid numerical instability.

4.2.2 `1 penalization (L1)

We can also consider adopting an `1 penalty in the projection step, i.e.

u∗w = arg min
u∈Rk

‖Φu− (R+ γΦ′w)‖22 + β‖u‖1. (4.7)

The difficulty with this approach lies in the fact that there is now no closed-

form solution to the optimization problem, a fact which causes difficulties

when attempting to solve for the fixed-point w = u∗w. Even though the

projection step is just one of `1 penalized least-squares, the use of the fixed-

point results in the problem not being equivalent to the Lasso. In fact,

a more specialized algorithm is required to solve this problem. For a full

description of this approach, and a related algorithm to solve this problem

(LARSTD), we refer the reader to the work of [Kolter and Ng, 2009].

4.2.3 `2 and `2 penalization (L22)

Another approach we can take involves using the nested-optimization for-

mulation of LSTD and applying regularization to both the projection and

fixed-point steps. Such regularization was utilized by [Farahmand et al.,

2009]. We can write this problem as

u∗w = arg min
u∈Rk

‖Φu− (R+ γΦ′w)‖22 + β‖u‖22

w∗ = arg min
w∈Rk

‖Φw − Φu∗w‖22 + β′‖w‖22. (4.8)

Just as we did in (4.5) we can find a closed-form solution to u∗w and can

then simplify the residual term of the fixed-point subproblem as

Φw − Φu∗w = Φw − Φ(ΦTΦ + βI)−1ΦT︸ ︷︷ ︸
Σ

(R+ γΦ′w). (4.9)

96

Here the matrix Σ represents the empirical `2 penalized projection opera-

tor, or hat matrix, which projects n-vectors onto the space spanned by the

features Φ. We can then solve for w∗ in closed form as

w∗ = arg min
w∈Rk

‖
X︷ ︸︸ ︷

(Φ− γΣΦ′)w −
y︷︸︸︷

ΣR ‖22 + β′‖w‖22 = (XTX + β′I)−1XT y.

(4.10)

We can also, however, formulate this problem in terms of the standard LSTD

matrices (as defined in Section 4.1) by noting that for C = Φ(ΦTΦ + βI)−1

we can write X = C(A+ βI) and y = Cb.

4.2.4 `2 and `1 penalization (L21)

Finally, we can also consider the same nested optimization problem as in in

the previous scheme, but with an `1 penalty used in the fixed-point operator,

i.e.

u∗w = arg min
u∈Rk

‖Φu− (R+ γΦ′w)‖22 + β‖u‖22

w∗ = arg min
w∈Rk

‖Φw − Φu∗w‖22 + β′‖w‖1 (4.11)

Here we can again use the simplification from (4.10) to write the solution as

w∗ = arg min
w∈Rk

‖ (Φ− γΣΦ′)︸ ︷︷ ︸
X

w − ΣR︸︷︷︸
y

‖22 + β′‖w‖1. (4.12)

As a result we have now transformed L21 into a standard Lasso problem, in

terms of X and y, to which we can apply any off-the-shelf solution method.

We note that the use of the `2 penalty primarily provides for the avoidance

of numerical stability in the projection step. Alternatively one could also

consider using a mixture of `1 and `2 penalization in the fixed-point step

as in [Zou and Hastie, 2005], although we do not consider this penalization

scheme here.

97

4.3 Standardizing the data

In standard applications of the Lasso, it is often assumed that the feature

matrix has columns that are standardized (i.e. that they are centered and

zero-mean) and that the response vector is centered. Although we will briefly

discuss the reasons for this, a more comprehensive treatment is given in

e.g. [Friedman et al., 2001, Section 3.4]. The centering is assumed because

we generally want to estimate an unpenalized bias term w0 so as to avoid

making the problem dependent on the responses’ origin. In doing so, the

bias is given by the mean response and the remaining weights w can then be

estimated using no bias term and centering the features and responses. The

scaling of the features is perhaps more important and we can first note that

the Lasso estimate is not invariant to this scaling. The scaling essentially

evens the playing field for deciding which features are important, but it can

also greatly impact the convergence speed of solution methods [Friedman

et al., 2001]. In this section we will now describe how to incorporate these

assumptions into the L21 scheme introduced in the previous section.

We will now explicitly introduce a bias term w0 into the value function

approximation with V π(x) ≈ φ(x)Tw+w0. We can then rewrite the nested

optimization problem as

(u∗w, u
∗
w0) = arg min

u,u0
‖Φu+ u0 − (R+ γ(Φ′w + w0))‖22 + β2‖u‖22 (4.13)

(w∗, w∗0) = arg min
w,w0

‖Φw + w0 − (Φu∗w + u∗w0)‖22 + β1‖w‖1. (4.14)

Here we have also introduced a bias term u∗w0 corresponding to the resulting

bias of the projection step. Although this notation is somewhat cumbersome,

it has been chosen to most closely match the notation used in introducing

the original penalized problem in the abvoe sections.

Now, before solving these problems we will first introduce the following

notation: Φ̄ = mean(Φ) is the row-vector of feature means, Φ̃ = Φ−1nΦ̄ are

the centered features where 1n is a column vector of n ones, and Φ̂ = Φ̃Ω

consists of the centered and rescaled features given a scaling matrix Ω whose

diagonal elements consist of the inverse standard deviations of the feature

98

matrix Φ. Similar terms are introduced for centering both Φ′ and R.

For both the projection and fixed-point sub-problems we can solve for

the bias and weight terms individually. In both cases the bias is given by

the mean response minus the mean of the features and the optimal weights.

For the bias of the projection step this can be written as

u∗w0 = (R̄+ γΦ̄′w + γw0)− Φ̄u∗w. (4.15)

The bias now depends upon finding u∗w, but we can solve for this by centering

both the features and responses and solving the following problem:

Ω−1u∗w = arg min
u∈Rk

‖Φ̂u− (R̃+ γΦ̃′w)‖22 + β2‖u‖22 (4.16)

= (Φ̂T Φ̂ + β2)−1Φ̂T (R̃+ γΦ̃′w). (4.17)

Note, however, that since we are solving this minimization problem using

a scaled feature matrix (i.e. Φ̂) we must remember to rescale back into the

original units, which accounts for the the inverse of Ω.

We can now write the projected value function as

Φu∗w + u∗w0 = (Φ− 1nΦ̄)u∗ + (R̄+ γΦ̄′w + γw0)

= Φ̂(Φ̂T Φ̂ + β2)−1Φ̂T︸ ︷︷ ︸
Σ

(R̃+ γΦ̃′w) + (R̄+ γΦ̄′w + γw0).

Here we have combined terms using the definitions introduced earlier and

we can see the Σ term is the `2 penalized projection matrix onto the centered

and rescaled features. Plugging this projected value function into the fixed-

point problem we arrive at

(w∗, w∗0)

= arg min
w,w0

‖Φw + w0 − Φu∗w − u∗w0‖22 + β1‖w‖1

= arg min
w,w0

‖ (Φ− γΣΦ̃′ − γ1nΦ̄′)︸ ︷︷ ︸
X

w + (1− γ)w0 − (ΣR̃+ R̄)︸ ︷︷ ︸
y

‖22 + β1‖w‖1.

99

We can see then that this is very closely related to the original formu-

lation from (4.12), however here we are projecting according to the cen-

tered/rescaled features and X and y have additional components related to

the mean next-state features and mean rewards respectively.

Now we truly have a standard Lasso problem. We can solve for the

optimum w∗ using any off-the-shelf Lasso solver using the scaled/centered

matrix X and centered vector y (and again if we rescale X we must return

the output to the original scaling). Given the optimal weights we can then

solve for the bias term as (1 − γ)w∗0 = ȳ − X̄w∗, where these terms again

denote the mean response and the mean of the features respectively.

4.4 Discussion of the different regularization
schemes

In this work, we are particularly interested in the situation where the number

of features is greater than the number of samples, k > n. Drawing on results

from standard regression problems, we would expect the `2-based methods to

perform poorly in this situation. In fact, we will see in the later experiments

that just such a drop-off in performance occurs at the point when k overtakes

n. We would, however, expect the `1-based methods, due to the feature

selection properties of this penalty, to continue performing well so long as

there is some small subset of relevant features that fit the value function well.

In the setting of regression this behavior is well-established both empirically

and theoretically [e.g., Bunea et al., 2007, Tibshirani, 1996]. The extension

of this behavior to the RL setting, although expected, is not entirely straight-

forward due to the fixed-point aspect of the learning process. In the rest

of this section, we will discuss and contrast how the `1 regularization is

implemented in the two penalized methods, L1 and L21.

The main difference between the two schemes, L1 and L21, lies in the

choice of where to place the `1 penalty. The L1 approach uses a penalty

directly in the projection operator. This is a straight-forward modification

of the projection, and we would expect that, if the result of applying the

Bellman operator can be well-represented by a sparse subset of features, the

100

projection will find this. In fact, there are some recent theoretical guarantees

that, if the target value function V π is sparse, the L1 scheme will be able

to take advantage of this fact as shown by [Ghavamzadeh et al., 2011].

More precisely, if s � k is the number of features needed to represent

V π, the prediction error of L1 directly scales with s instead of k as shown

by Ghavamzadeh et al.. This suggests that L1 will perform well until the

number of samples is bigger than the number of relevant features, n ≥ s.

However, we must note that when the projection step is combined with

the fixed point, it is not entirely clear what is being optimized by the L1

procedure. In fact, [Kolter and Ng, 2009] claim that this approach does not

correspond to any optimization problem in w. Further, from an algorithmic

point of view, since the fixed-point is applied after the `1 optimization, this

approach does not correspond to a Lasso problem, resulting in the need to

use more specialized algorithms to solve for w.

Alternatively, the L21 approach places an `1 penalty in the fixed-point

step. The main benefit of this approach is that it allows us to cast the reg-

ularized LSTD problem as a Lasso problem, to which we can apply general-

purpose Lasso or `1 solvers. This also allows us to more straightforwardly

apply results such as those of Section 4.3, something that is not easily done

in the L1 scheme. The application of standardization to the feature matrix

has a great deal of impact on the results of Lasso in regression problems

and we would expect it to have a great deal of impact for RL as well (in

the later experiments we will see some evidence of this). We also found that

the ability to standardize the features played a role in the previously men-

tioned flexibility of L21. In fact, we found that without standardization of

the features it was difficult to apply certain iterative methods such as those

discussed in [Friedman et al., 2007, Schmidt, 2010] due to slow convergence.

One potential downside to the L21 approach is the necessity of using an `2

penalty in the projection step. It is not entirely clear what effect this has on

the resulting algorithm, although in our preliminary experiments we found

that this penalty was primarily useful in computing the projection matrix

Σ, and making sure that the required matrix was non-singular. Further,

the necessity of computing Σ does make L21 somewhat more expensive than

101

L1, however as this matrix only depends on Φ, using this procedure inside

of a policy iteration scheme would only require the matrix being computed

once. Finally, while there does exist some theoretical evidence that the L1

approach is able to take advantage of the sparsity of V π, no such guarantees

exist yet for L21. The combination of penalizing both the projection and

fixed-point steps introduce this theoretical difficulty, however see for example

the work of [Farahmand et al., 2009] for non-sparse guarantees in the `2

penalized setting. Our experiments do, however, seem to indicate that L21

is able to capitalize on such value functions, and may even perform better

when the value function is “truly sparse”.

4.5 Experimental results

In comparing the performance of the regularization schemes introduced in

Section 4.2, we will consider the chain problem introduced in [Lagoudakis

and Parr, 2002]. In these experiments we will utilize a 20-state, 2-action

MDP wherein states are connected in a chain and where upon taking action

left from state x the system transitions to state x − 1 with probability p

and x + 1 with probability 1 − p. The same holds for action right but in

reverse and at both ends of the chain a successful right (or left) action leaves

the state unchanged. We will restrict ourselves to the problem of policy

evaluation and will evaluate the performance of the regularization schemes

as the relative number of features k (as compared to the number of samples

n) is varied. In particular, we will consider k = s+ s̄ features consisting of

s “relevant” features including a single constant feature and some number

of radial-basis functions (RBFs) spread uniformly over the state space. The

additional features consist of “irrelevant” or “noise” features implemented

by extending the state-space of the chain model to include s̄ additional

dimensions where each additional dimension is independently distributed

xi+1
t ∼ N (0, σ2) for all time indices t. The value of each noise feature

is then given by the corresponding state’s value, i.e. φs+i(xt) = xi+1
t for

1 ≤ i ≤ s̄. These additional features can also be thought of as random

features of the standard chain model.

102

0 200 400 600 800 1000 1200 1400 1600

0

10

20

30

40

50

60

70

80

90

100

Number of noisy features

V
a

lu
e

 f
u

n
c
ti
o

n
 p

re
d

ic
ti
o

n
 e

rr
o

r
Performance on "sparse" chain while varying number of noise features

l1

l2,l1

l2

l2,l1 unnorm.

100 200 300 400 500 600 700 800

0

20

40

60

80

100

120

Number of samples

V
a

lu
e

 f
u

n
c
ti
o

n
 p

re
d

ic
ti
o

n
 e

rr
o

r

Performance on "sparse" chain while varying number of samples

l1

l2,l1

l2

l2,l1 unnorm.

Figure 4.2: Performance of policy evaluation on a sparse value func-
tion.

We will first consider the case where the value function can be con-

structed as a sparse combination of features. In order to test this scenario,

we start with a sparse value function and work backwards. We will con-

sider a value function given as a linear combination of s relevant features,

i.e. V (x) =
∑s

i=1 φi(x)w∗i and we then define the reward of our model as

r(x, x′) = V (x)− γV (x′). We have, in this case, artificially constructed our

reward in order to enforce the desired sparse value function. In this exper-

iment we used s = 10 and varied the number irrelevant features. In each

of 20 runs we sample n samples on-policy and use them to approximate the

value function. Here we used a policy π which takes action left on the first

10 states and action right on the next 10, although due to our construction

of the reward function for this problem, the actual policy used does not

affect the value function. The resulting approximation was then evaluated

at 500 test points and the empirical error between this and the true value

function is computed. The policy is kept fixed across all runs and within

each run we perform cross-validation over the regularization parameter.

In Figure 4.2 we compare the L2, L1, and L21 variants described in

Section 4.2; here we omit the L22 variant to avoid clutter1. L21 can be run

using any Lasso solver. In our implementation we both tested LARS [Efron

1Preliminary experimental results seemed to show that the L22 variant performed sim-
ilarly to the L2 scheme.

103

et al., 2004] and a number of gradient descent procedures [Friedman et al.,

2007, Schmidt, 2010]. In order to generate the value function we sampled

our true weights w∗i uniformly in the range [−5, 5] for every run. From

our experiments, however, we saw that the true values of w did not play

a significant role in explaining the error of each method: this variance was

more attributable to the data samples generated. The first of these plots

shows the behavior using n = 400 samples (consisting of 20 episodes of length

20) while varying the number of noise features. We can first note that all

algorithms perform quite well until the number of features k approaches the

number of samples n, but after around 400 noise features the algorithms

begin to differentiate. L2 immediately starts overfitting the data and its

prediction error grows almost linearly with the total number of features k.

On the other hand, the `1 regularization approaches are expected to depend

more directly on the true dimensionality s rather than k. In fact, we can

see that both L1 and L21 are not drastically affected by overfitting when k

becomes greater than n. In the plot, we also include the performance of L21

without the rescaling described in Section 4.3 and here this performs about

as well as the L1 approach (using LARSTD). The rescaled version, however,

is much better able to deal with the increase in number of noise features

as can be seen by its very low prediction error, and in comparison to the

other methods this is nearly constant. The second plot shows the results

of s̄ = 600 noise features and varying the number of samples n, and we see

similar differences in performance.

Next we consider the standard chain problem which uses a reward of 1

when the relevant state (x1) is at either endpoint and 0 elsewhere. In the

first of these experiments we use s = 6 relevant features and again vary the

number irrelevant features. In each of 20 runs we again sample 400 data

points (consisting of 20 episodes of length 20) on-policy (using the optimal

policy) and use these points to approximate the value function. Given this

model we can compute the true value function and in order to generate the

plots we evaluate the empirical error between this and the estimated value

function at 500 test points. Again, the policy is kept fixed and within each

run we perform cross-validation over the regularization parameter.

104

0 200 400 600 800 1000

5

10

15

20

25

30

35

40

45

50

Number of noisy features

V
a
lu

e
 f
u
n
c
ti
o
n
 p

re
d
ic

ti
o
n
 e

rr
o
r

Performance on true chain while varying number of noise features

l1

l2,l1

l2

l2,l1 unnorm.

200 400 600 800 1000 1200 1400 1600

10

20

30

40

50

60

Number of samples

V
a
lu

e
 f
u
n
c
ti
o
n
 p

re
d
ic

ti
o
n
 e

rr
o
r

Performance on true chain while varying number of samples

l1

l2,l1

l2

l2,l1 unnorm.

Figure 4.3: Performance of policy evaluation on the chain model for
a fixed policy.

The results of Figure 4.3 closely echo the results of Figure 4.2. Here,

however, we can see that there is a somewhat more significant difference

between the unscaled version of L21 and the L1 variant, although this per-

formance is still significantly better than L2 alone. We also see that the

prediction error is no longer zero (as would be expected due to the fact that

now the value function can be exactly represented in the linear space). We

can also see, however, that there is a more significant increase in this error

as we approach the point where the number of features equals the number of

samples. Again, the second plot shows the results of s̄ = 600 noise features

while varying the number of samples n, and again we see similar differences

in performance.

In Figure 4.4 we show the effect of the number of irrelevant features on

the best penalty parameters chosen via cross-validation on both the sparse

chain and the standard chain model. The `1 based methods use LARS

(or the LARSTD modification) to find the regularization path and for the

`2 based method we used a grid of 20 parameters logarithmically spaced

between 10−6 and 10. In both figures we show results where the number of

samples is fixed at n = 400 and the number of noisy features is increased.

The main point to see here is the much greater variability in this parameter

value for the L2 method. The L1 method then may also be more variable

105

0 200 400 600 800 1000 1200 1400 1600

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of noisy features

O
p
ti
m

a
l
re

g
u
la

ri
z
a
ti
o
n
 p

a
ra

m
e
te

r
Optimal regularization parameters for "sparse" chain

l1
l2,l1

l2
l2,l1 unnorm.

0 200 400 600 800 1000 1200 1400 1600

0

2

4

6

8

10

Number of noisy features

O
p
ti
m

a
l
re

g
u
la

ri
z
a
ti
o
n
 p

a
ra

m
e
te

r

Optimal regularization parameters for true chain

l1
l2,l1

l2
l2,l1 unnorm.

Figure 4.4: Effect of the number of irrelevant features on the optimal
penalty parameters chosen via cross-validation.

than the L21 method, but this level of increase could also be attributable to

different scaling in this parameter. For these experiments we also found that

the `2 parameter of L21 was primarily useful in ensuring the relevant matrix

Σ was nonsingular, and as a result we were able to set this parameter to a

quite low-value 10−6 and in these plots we only show the `1 penalty. Based

on this it would seem that the tuning of the penalty parameter for L21 is

at least no harder than that of L1 due to the minimal effect of the second

parameter Finally, we point out that the decline in the penalty parameter of

L2 for the sparse chain is attributable to the fact that after approximately

600–800 noise features all parameters were “equally bad”.

Finally, we analyzed the effect of the number irrelevant features on the

number of iterations when solving the problem using L1/LARSTD and when

solving the L21 problem using LARS [Efron et al., 2004]. Although these

results are not entirely conclusive, it appears that the L21 approach may

require fewer iterations for sparse models, but more for non-sparse models.

As mentioned earlier, the additional flexibility of the L21 scheme allows us

to apply more sophisticated optimizations schemes such as the coordinate

descent approach of [Friedman et al., 2007] or other iterative schemes such

as those of [Schmidt, 2010]. We applied both of these procedures, code for

which is available online and is quite fast, to our problem. However, the

106

comparison of the complexity of these different algorithms is not simple and

we leave it for future work.

4.6 Chapter summary and conclusions

In this chapter we presented a number of regularization schemes for LSTD,

culminating in a novel approach using nested `2 and `1 penalties. We then

showed how to apply standardization techniques from the regression litera-

ture to this problem and discussed preliminary experiments comparing this

approach to other schemes based on `2 and `1 penalized projection. The

main benefit of this approach is the additional flexibility it provides over

`1 projected LSTD approaches (such as LARSTD), and the ability to use

standard Lasso solvers and techniques. This means that any new solver for

Lasso could be immediately used in L21, whereas this would need a rethink-

ing of the whole algorithm for L1. We should also note a similar approach,

derived in parallel, of [Geist and Scherrer, 2011].

There are also a number of open areas of research with this approach.

A more thorough experimental analysis is needed, including an extension

of this method to the problem of policy iteration via LSPI. A theoretical

analysis of this approach is also called for, in line with the previously noted

analysis of the L1 scheme presented in [Ghavamzadeh et al., 2011]. Finally,

a better understanding of the ramifications of including the `2 penalty would

be most beneficial.

107

Chapter 5

Multi-armed bandits

the problem is a classic one; it was formulated during the war,

and efforts to solve it so sapped the energies and minds of Allied

analysts that the suggestion was made that the problem be dropped

over Germany, as the ultimate instrument of intellectual sabotage.

–Peter Whittle, on multi-armed bandits

In this chapter we will consider a model that is in some sense a simplification

of the MDP problem presented in previous chapters. For the moment we will

abandon the notion of a state space and consider a model consisting only

of an action space A. At each time n the decision maker chooses an action

an ∈ A and receives reward rn from the environment. More concretely, we

will assume this interaction proceeds as follows:

For each round n = 1, 2, . . .

1. the decision maker chooses an action an ∈ A;

2. the decision maker receives reward rn.

This model is known in the literature as a multi-armed bandit problem.

Here the actions are commonly described as arms in an analogy to the

problem faced by a gambler when deciding which of several slot machines

(or one-armed bandits) to play. The gambler must sequentially decide which

108

of these arms to pull and he or she will receive some possibly random payout

for pulling the ath arm. In this chapter, following the classical formulation of

[Robbins, 1952], we will assume that rewards for each arm are independently

distributed R(a) ∼ ga(·) according to some fixed but unknown distribution.

Throughout this chapter we will let Rn denote the random variable asso-

ciated with the reward at time n and let R
(a)
n denote the reward had we

instead chosen action a. Later, in Chapter 6, we will consider correlated re-

wards, however note that in this chapter we will assume independent reward

distributions for each arm.

At round n the decision-maker will have interacted with the bandit pro-

cess and obtained data concerning the rewards for each arm of the form

Dn−1 =
(
a1:n−1, r1:n−1

)
. We can then use this information about past re-

wards to inform the decision of which arm an to select at time n. Throughout

the rest of this chapter we will make use of index strategies by way of quan-

tities νna : (A× R)n−1 → R which at each round n map the past data to a

scalar index quantity. The action selection strategy is then completely de-

termined by this index, an = arg maxa∈A νna(Dn−1). We will also generally

write this index quantity more simply as νna and leave the dependence on

Dn−1 implicit except where necessary. Pseudo-code for arm selection using

an index strategy is shown in Algorithm 2. While the definition of an index

strategy is somewhat opaque, intuitively this index corresponds to the value

of selecting the ath arm given data Dn−1. For example, we could consider

a strategy that tries every arm once, and afterwards follows a strategy such

that νna is the empirical mean of arm a. However this strategy is in some

sense too greedy as it does not take into account the uncertainty inherent in

the arms, i.e. that some of the arms that have been pulled less often may

have higher rewards that we just haven’t seen yet. As we will see in the next

section, this intuition can be made much more concrete.

Finally, we should note a few details about the index computation itself.

First, we have written the index in such a way that it can depend on n,

the current stage of the decision process. This is important as many of the

strategies we will introduce in this chapter will either directly or indirectly

depend on this quantity in order to adjust their exploration as time goes on.

109

Algorithm 2
Bandit arm selection using a general index policy.

1: Initialize the index quantity ν1a.
2: for n = 1, 2, . . . do
3: Select action an = arg maxa νna and receive reward rn.
4: Update the data Dn = Dn−1 ∪ (an, rn).
5: Compute the index quantities νna.
6: end for

We have also written this function in such a way that the index quantity

associated with arm a is also allowed to depend on the data acquired for

every other arm. Many of the strategies we introduce can also be written

such that the index νna only depends on the subset of data Dn−1 such

that at = a, i.e. these indices are independent. For example, the greedy

strategy introduced above only makes use of independent indices. However,

this generalization allows for index computations which directly compare

the value of different arms.

The rest of this chapter serves as a review of the relevant literature,

with empirical comparisons given of the various methods we will introduce.

In the Section 5.1 of this chapter we will introduce the optimal Bayesian

approach of [Gittins, 1979]. In particular, we will see that the computations

necessary to obtain the optimal policy for this problem can be formulated

as an MDP in order to relate to the methods of the previous chapters.

This procedure can, however, prove quite expensive in practice. Instead,

in Sections 5.2–5.3 we will introduce a number of alternative index policies

from the literature the computation of which are much more amenable. We

will also introduce the concept of cumulative regret as a measure of the

performance of these algorithms and detail their approximation guarantees.

We will also empirically compare these methods on a set of test problems.

The policies introduced in Section 5.2 are quite useful when the deci-

sion maker wants to optimize the online performance of the decision making

process—i.e. the sum of (possibly discounted) rewards both now and in the

future. Alternatively we are often faced with the problem of identifying the

single best arm. This often comes about when the arms correspond to an

110

optimization problem which must be solved with limited resources. Con-

sider, for example, the problem of drug trials, where each arm corresponds

to a possible drug combination and each round corresponds to a single ex-

periment with a particular combination. At the end of the trial we are not

interested in how well the bandit process performed during the testing, we

are only concerned with the performance of the best drug combination. In

Sections 5.4–5.5 we will introduce modifications to the policies of Section 5.2

from the literature that are able to take advantage of this changed objective.

In particular we will introduce the notion of simple regret which captures

this notion of only being concerned with later performance, and distinguish

it from cumulative regret. We will also study the empirical performance of

these methods. Finally, these sections as a whole will serve as a branch to

the topic of Chapter 6 wherein we will consider a similar bandit process but

with correlated, and generally continuous, arms.

5.1 The optimal Bayesian solution

We will first consider the standard task of constructing a Bayesian model

for a single arm. Let p(r|θ) denote the probability of observing rewards

r conditioned on some unknown parameters θ and let p(θ) denote these

parameters’ prior density. Given this model and n reward samples r1:n we

can write the posterior density of the parameters as

p(θ|r1:n) ∝ p(θ)
n∏
i=1

p(ri|θ). (5.1)

We can easily extend this formulation to a collection of independent arms

a ∈ A where we must now make use of the previously introduced collection

of data Dn =
(
a1:n, r1:n

)
. We will next assume likelihood and prior models

p(r|θa) and p(θa) associated with each arm a. The posterior for the ath

arm, which we will write as p(θa|Dn), is then given exactly as above by

considering only those rewards (rt, . . .) such that at = a; this is due to the

fact that we are assuming independent arms. Note that as a result, selecting

arm a will only change the posterior for that particular arm—a fact that

111

will have implications later in this section. Finally, we can also write the

posterior reward predictions as

p(r|a,Dn) =

∫
p(r|θa) p(θa|Dn) dθa, (5.2)

i.e. this is a distribution over the reward r that would be obtained from

selecting arm a, predicted using the data from n previous arm pulls. Below

we illustrate this Bayesian model using an arm with Bernoulli reward like-

lihood and a Beta prior. We will use this as a running example throughout

the rest of this chapter.

Example. Consider the problem of a single arm with Bernoulli dis-

tributed rewards with success probability given by θ. We will also as-

sume a prior density given by p(θ) = Beta(θ;α0, β0). Given this conju-

gate prior we can then see that the posterior is also a Beta distribution

p(θ|Dn) = Beta(θ;αn, βn),

where αn = α0 + I1(r1) + · · · + I1(rn) is the number of successes in

n trials (plus the pseudo-count α0) and βn is defined similarly for the

number of failures. Finally, the posterior reward distribution is Beta-

Bernoulli with parameters given by (αn, βn) and as a result has mean

and variance given by

E[R|Dn] = αn
/

(αn + βn),

Var[R|Dn] = αnβn
/

(αn + βn)2.

With this background in place we will now turn to the problem of how to

select the next action in a multi-armed bandit, for which we must introduce

an index strategy νna. One possible strategy for selecting the next action as

alluded to previously is simply to choose the arm with the highest expected

reward under the posterior distribution, i.e. νna = E[Rn|a,Dn−1]. This

myopic strategy, unfortunately, is sub-optimal. Consider, for example, two

112

Bernoulli arms with Beta priors whose current sufficient statistics are given

by α1 = β1 = 1 and α2 = β2 = 10. The expected reward for both arms is 0.5,

however the posterior associated with the first arm has much higher variance.

It is therefore much more likely that pulling arm one will result in significant

changes to the posterior distribution than it would be to see comparable

changes upon pulling arm two. Intuitively this makes pulling arm one a much

more attractive option, as both arms have the same expected immediate

reward, but by pulling arm one we can gain much more information about

the actual arm distribution. Somewhat more concretely, we can see that

there is a much higher probability that the true mean of arm one is greater

than its posterior mean.

Rather than appealing to intuition as a rule for which arm to select, we

can instead formalize the problem of choosing arms in a multi-armed bandit

as an MDP. Note, however, that the MDP we will introduce is separate

from the underlying reward function of the bandit itself—this quantity is

unknown to the decision maker. Instead we will introduce an MDP such that

by solving for the value function of this MDP we will obtain the expected

value of taking each action a ∈ A, conditioned on the current data Dn−1.

This in turn will allow us to compute the index quantity νna(Dn−1). In the

next two sub-sections we will first introduce the MDP that we are interested

in solving, and then we will show an efficient method for solving for the value

of each action.

5.1.1 Modeling the bandit problem as an MDP

We can now turn to the specification of our MDP model, the action space

of which can easily be seen to correspond to the set of k arms A. We will

now assume that each arm has the same prior and likelihood, and we will

assume a set of sufficient statistics X that fully describe the posterior for

each arm. In particular, we will let xna ∈ X denote the sufficient statistics

for the ath arm at the beginning of round n, from which we can write the

posterior over parameters and rewards as

p(θa|Dn−1) = p(θa|xna),

113

p(r|a,Dn−1) = p(r|xna).

The state space of our MDP is then given by X k, i.e. the collection of

sufficient statistics for each arm. The assumption of sufficient statistics

means that any posterior p(θa|Dn−1) can be represented exactly by some

statistics xna; i.e. we can really think of our state as being the posterior

distribution for each arm, but that we represent this distribution using its

sufficient statistics. Alternatively, we could have instead modeled the state

of this process using the data tuple Dn−1, however that would mean that

we would have a state of growing dimension. Further, the assumption of

sufficient statistics is not overly arduous, as it will often hold in the problems

we are interested in. For example, the Beta-Bernoulli example introduced

above has statistics given by xna = (αna, βna), i.e. the success/failure counts

for each arm.

As an aside, we should also note that the state space of this MDP is

not an actual, physical state but is instead a so-called informational state

denoting a posterior distribution over the “true” model parameters. In fact,

we can view this problem as a simple partially-observable MDP, see e.g.

[Cassandra et al., 1995], where the latent state is fixed. In this setting the

underlying, hidden state of the POMDP corresponds with the true model

parameters. However, POMDPs are often solved by transforming them into

MDPs whose states are given by the posterior statistics, exactly as we will

do in this section.

Next we will assume the existence of a function f : X × R → X , which

we will use, merely to formalize the posterior update introduced at the

beginning of this section. In order to explain this function, consider a bandit

process in state xn, from which the decision maker takes action a and receives

rewards r. Then the next state of the process will be of the form xn+1,a′ =

xna′ for actions a′ 6= a and xn+1,a = f(xn, r). In other words f is used to

update the statistics of the selected arm, whereas all other arms stay the

same. As an example, for the Beta-Bernoulli model introduced above this

114

update corresponds to

f((α, β), r) = (α+ I1(r), β + I0(r)),

where we need only update the success/failure counts of the selected arm.

Note that the fact that taking action a only changes the statistics corre-

sponding to that arm follows from the independence of each arm’s reward

distribution. In other words, the posterior for arm a only changes once we

acquire more data about that arm. We should also note that this function

describes the deterministic transition model, given the rewards. In other

words, all the stochasticity in the transitions are determined by these re-

wards.

We can now introduce stochastic rewards for this MDP given exactly

by the posterior predictive distribution over rewards. Upon taking action a

given the current statistics xn, rewards are distributed according to p(r|xna).
Note again that this reward model is separate from the underlying, unknown

rewards ga. In fact, we can think of this probability distribution as a surro-

gate for the unknown rewards that allows us to plan into the future without

performing any actual arm pulls. And again, we note that this posterior

distribution is independent for each arm. Later, in Chapter 6 we will intro-

duce similar approaches which make use of a Gaussian process surrogate in

order to take into account correlated arms. Finally, by taking expectations

with respect to this reward model we can compute the expected reward for

pulling each arm, and by extension the expected effects that these reward

observations would have on the posterior. Again, we emphasize that as a

result the reward and transition models are based only on the posterior dis-

tribution of each arm, and are wholly separate from the underlying reward

distributions ga precisely because these distributions are unknown to the

decision maker.

This formulation of the problem follows from the work of [Bellman, 1956]

for two-armed bandits and [Gittins and Jones, 1979]; see also the extensive

coverage of [Gittins et al., 2011]. We should now note what using this MDP

means. Consider a bandit process at round n which has observed data

115

Dn−1. We can map this observed data to a state xna for each arm and use

the MDP model that we have just introduced to extrapolate into the future

the expected rewards that would be gained on pulling each arm. And again,

these expectations are computed based purely on the posterior distribution

induced by the data Dn−1. One question that remains is why we need the

MDP formulation when we already have the posterior distribution at hand?

The answer to this question is that by pulling some arm a we will gain not

only rewards for pulling that arm, but additional information that we can

incorporate into future posteriors. As a result we need the MDP in order to

take into account the future rewards, but also the affect these future rewards

will have on future posteriors.

Now, at first glance, the actual computation involved with solving this

MDP seems daunting. Suppose we were to approximate the value of taking

some action by computing expected rewards N steps into the future. This

expectation would require integrating over all kN possible sequences of ac-

tions, which scales exponentially with the number of arms. Surprisingly, the

optimal policy for this class of problems takes the form of an independent

index depending only on the state of each arm xna. This fact relies on the

independence of each individual arm, and we will introduce this method

in the next sub-section. This optimal index strategy was originally intro-

duced by [Gittins, 1979] under the name dynamic allocation indices, and

is now more commonly known as the Gittins index. The method we will

detail for computing this process is known as the calibration method, and

its exposition is loosely based on that of [Gittins et al., 2011].

5.1.2 Computing the Gittins index

In order to introduce Gittins’ index policy we will first turn to the problem

of a “one-armed” bandit. In this problem we consider a single bandit arm

which starts in state x1 and a deterministic reference arm with no state

which when pulled always gives known reward λ. Suppose now that the

bandit arm is chosen at time n = 1 and an optimal policy is followed for all

subsequent steps. Let τ be the first time step at which the reference arm

116

is chosen. Once this time step is reached the posterior distribution for the

bandit arm will not change, i.e. xτ = xτ+1, since new observations about an

arm only occur when the arm is chosen. As a result, if it is optimal to select

the reference arm at time τ it will remain optimal for all following steps.

In other words, optimizing the policy of this problem reduces to finding the

first step τ > 1 at which we will switch to the reference arm. Equivalently,

by optimizing over τ we are finding the maximum number of times under

expectation that we should pull the bandit arm after pulling it at least once.

By directly optimizing over this time horizon τ we can write the value of

pulling the bandit arm at least once from state x1 as

V (x1, λ) = sup
τ>1

{
E
[τ−1∑
n=1

γn−1Rn

∣∣∣∣x1

]
+ γτ−1(1 + γ + γ2 + · · ·)λ

}

= sup
τ>1

{
E
[τ−1∑
n=1

γn−1Rn

∣∣∣∣x1

]
+ γτ−1 λ

1− γ

}
.

The second term inside the supremum corresponds to the discounted rewards

accrued once we start pulling the reference arm, where the leading γτ−1

term follows from the initial discount of waiting τ time steps. Note also

that the fractional value 1
/

(1 − γ) follows from simplifying the geometric

series 1 + γ + · · · . As a consequence, we can easily see that were we to pull

the reference arm at all times we would accrue rewards λ
/

(1−γ) due to the

constant reward of this arm.

Let us now consider the advantage of the bandit arm over the reference

arm, which we can obtain by subtracting the long-term value of always

pulling the reference arm from V (x1, λ). We will write this quantity as

D(x1, λ) = V (x1, λ)− λ

1− γ

= sup
τ>1

{
E
[τ−1∑
n=1

γn−1Rn

∣∣∣∣x1

]
− (1− γτ−1)

λ

1− γ

}
(5.3)

= sup
τ>1

E
[τ−1∑
n=1

γn−1(Rn − λ)

∣∣∣∣x1

]
. (5.4)

117

The final equality follows by expanding λ/(1−γ) back to its geometric series,

or more simply by noticing that the advantage of the bandit arm can also

be seen as the expected difference at each time step up until time τ . Once

time τ is reached the bandit arm offers no advantage since we will no longer

be pulling that arm. By setting D(x1, λ) equal to zero and solving for λ

we can find the maximum value of the reference arm under which we would

be indifferent between the reference arm and the bandit arm. We can see

from (5.3) that for any fixed τ this quantity is a decreasing linear function

of λ, from which the supremum over τ must be convex and decreasing. As a

result for any x1 the root of D(x1, λ) must exist and be unique. Intuitively

this value of λ represents the maximum cost that we would pay in order to

pull an arm with statistics given by x1, or in other words the value of this

arm.

Returning to the setting of K bandit arms, we will again assume that at

round n each arm is described by statistics xna. We can now introduce the

Gittins index as

νna = sup
λ
{λ : D(xna, λ) ≥ 0}. (5.5)

We have already defined D(xna, λ) as the advantage of pulling arm a at

least once over pulling the constant reference arm. As a result, by taking

the supremum in (5.5) we can see that νna represents the value at which

there is no advantage, i.e. this is exactly the value of pulling arm a. As a

result, so long as we can compute this value for every arm a, we can then

compare the index of each arm and select the arm with the highest index.

By doing so we are essentially selecting the arm which has the highest future

value under expectation. Note, however, that here we have only given an

intuition as to why this value serves as the optimal index strategy. To more

formally prove this intuition, see for example the work of [Frostig and Weiss,

1999].

Given a particular value of λ, Algorithm 3 details the process necessary

to approximate the difference quantity introduced in (5.4) using a finite time

horizon N . We can then identify the value of the index quantity by perform-

ing a bisecting search for the unique root of this function in λ. Alternatively

118

one can use a grid of values for λ and interpolate between points on this grid.

As mentioned earlier, the method presented in this section is known as the

calibration method, an analogy to the fact that the use of a standard bandit

process given by λ is used to calibrate the value of each arm. This process

was proposed in the original paper of [Gittins, 1979]; see also the work of

[Niño-Mora, 2011]. We can now consider the complexity of this procedure.

For general state-spaces the expectation in Step 4 of Algorithm 3 involves

a sum over all states x ∈ X , meaning that the inner loop is quadratic in

the number of states and as a result the entire procedure is O(NM2) for

M such states. The actual complexity for computing the index then relies

on how many calls to this procedure are necessary either using a bisecting

search or a grid of values.

In order to ground this discussion we can now turn to the running ex-

ample of the Beta-Bernoulli model introduced earlier. For this model we

can associate each state with the number of successes that have occurred.

For a finite horizon N , the number of states is thus given exactly by this

horizon, i.e. M = N . Note also that for α successes, the number of failures

is given by β = N − α. However, we can see that the transition model is

more constrained in this setting: given α successes we can only transition in

the next step to α + 1 successes or remain at α. This results in a constant

complexity for the expectation of Step 4, and as a result the complexity of

Algorithm 3 reduces to O(N2). This can, however, prove to be prohibitively

expensive for long time-horizons. Alternatively, we can see that the index

itself only depends on the number successes seen so far in the model, so

we can consider instead pre-computing these indices as a function of this

quantity. However, this is only trading computation for memory, leaving us

with O(N2) memory costs.

5.2 Alternative index policies and approximation
guarantees

Given a Bayesian model for each arm a, we introduced in the previous sec-

tion a strategy for optimally selecting arms based on their future expected

119

Algorithm 3
Computation of the value of a one-armed bandit with opportunity costs
λ using dynamic programming. This computes the quantity D(x1, λ) for
initial statistics x1 and approximated using a time horizon N .

Require: x1, N, λ, γ, and f
1: VN (x)← 0.
2: for n = N − 1, . . . , 1 do
3: for all x ∈ X reachable from x1 in n steps do
4: v ← E

[
R− λ+ γVn+1

(
f(x,R)

)]
5: Vn(x)← max(0, v)
6: end for
7: end for
8: return V1(x1).

rewards. As we have noted in the previous section, however, this optimality

can come at a high price with respect to the computational cost. Alterna-

tively, we can consider the task of finding a strategy with minimal regret,

i.e. the minimal difference between the rewards obtained by some strategy

and an oracle strategy that always pulls the optimal arm. In this section we

will introduce this concept, as well as a number of alternative index policies

that attempt to minimize the cumulative regret. We will also note how this

relates to the optimal Bayesian policy.

We will first let µa denote the expected immediate reward of pulling arm

a, i.e.

µa = E[R(a)] =

∫
rga(r) dr,

and let µ∗ = maxa µa denote the mean reward associated with the optimal

arm. Note that in the bandit setting these quantities are unknown to the

decision maker, and rely only on the unknown reward distributions. After

following some arm selection strategy for n rounds, we will also consider

the random variable Tna denoting the number of times that action a has

been played up to time n. This random variable depends on the actions

taken up to time n and as a result indirectly depends on the rewards—i.e.

it depends exactly on the data Dn. We can now introduce the cumulative

regret for some strategy as the difference between gains made by following

120

that strategy and the gains of the single best arm

Ln = max
a∈A

E
[n∑
t=1

R(a)
n −Rn

]
= nmax

a
E[R(a)]−

∑
a∈A

n∑
t=1

E
[
Ia(At)R

(At)
t

]
= nµ∗ −

∑
a∈A

E[Tna]µa. (5.6)

Note that the expectations written above depend on the distribution of the

data Dn, which depends not only on the rewards for each arm, but also on

the strategy used in order to select each arm. By introducing an indicator

over actions a we have written in the last equality the regret in terms of the

means of each selected arm and the number of times Tna that arm has been

selected.

The problem of minimizing regret was first considered in the classic work

of [Lai and Robbins, 1985]. In their work, the authors introduce action

selection strategies under which the expected number of actions taken from

a suboptimal arm a ∈ Ā can be written as

E[Tna] ≤
(

1

DKL(ga, g∗)
+ o(1)

)
log n, (5.7)

whereDKL(. . .) denotes the Kullback-Leibler distance. Also, recall that ga is

the true, unknown distribution of the ath arm, and here we will let g∗ denote

the distribution of the optimal arm. This bound on the number of times the

ath action is played means that the optimal arm will be pulled exponentially

more often than any other arm as n goes to infinity. Consequently, letting

∆a = µ∗−µa denote the difference in expected reward between the ath arm

and the optimal arm we can write the cumulative regret of this strategy as

Ln ≤
[∑
a∈Ā

(
1

DKL(ga, g∗)
+ o(1)

)
∆a

]
log n. (5.8)

We can see that this regret is of order O(log n) with average regret Ln
/
n

approaching zero as the decision maker makes more decisions. Lai and

Robbins also showed that regret of this order is optimal, i.e. no strategy

121

is able to improve upon this logarithmic regret. Interestingly, [Lai, 1987]

was further able to show that strategies which obtain the optimal O(log n)

bound are asymptotically optimal both in minimizing frequentist as well as

the Bayesian risk—i.e. such approaches do as well as Gittins in the limit as

n goes to infinity.

Briefly, the strategy of Lai and Robbins associates with each arm an

upper confidence bound about the mean reward of each arm and this bound

is then used within an index policy like that of Algorithm 2. However, the

particular form of bound used by Lai and Robbins is in general hard to com-

pute, relying on the entire sequence of rewards observed thus far. Instead,

in the sections that follow we will present related approaches that also ob-

tain the optimal regret bound, but are much easier to compute. Figure 5.1

shows an example of the different index strategies that we will introduce in

the following subsections.

5.2.1 UCB

We will now describe the upper confidence bound strategy UCB1 introduced

by [Auer et al., 2002]. Whereas the Gittins strategy was based on the

posterior distribution, the strategy of Auer et al. is instead based on the

empirical mean and high probability bounds on the deviations from this

mean. Here we will let µ̂na denote the mean of arm a at round n and again

let Tna denote the number of times this arm has been pulled. If no arms have

been pulled yet, we will assume the mean has been arbitrarily initialized to

zero. We can then introduce the following index

νna =


∞ if Tna = 0,

µ̂na +

√
2 log n

Tna
otherwise.

(5.9)

We can easily see that this process will begin by selecting each arm once. For

every subsequent step this index is based on a Chernoff- Hoeffding bound

over the deviations of the sample mean µ̂na from the true mean µa. For

reward distributions ga with support in [0, 1], Auer et al. also showed that

122

15
10

5
0
5

10
15

UC
B

Ba
ye

sU
CB

Ba
ye

sU
CB

-Q

Figure 5.1: Comparison of various bandit selection indices on a five-
armed problem. The top plot shows a number of successes
(green) and failures (red) drawn from a Bernoulli reward model,
and the bottom three plots show the relevant indices described
in this section. Although the indices have somewhat similar
behavior, their slight differences account for the differences in
performance that we will see later. Note, we do not show an
example of Thompson sampling as the randomness in this pro-
cedure makes a single sample not necessarily informative.

123

the UCB1 strategy exhibits cumulative regret

Ln ≤
(

8
∑
a∈Ā

∆−1
a

)
log n+ (1 + π2/3)

∑
a∈Ā

∆a. (5.10)

As a result this strategy attains the optimal asymptotic rate, albeit with a

slightly worse multiplicative constant.

5.2.2 Bayesian Quantile-based UCB

We will now return to the Bayesian setting introduced earlier wherein at

round n each arm has an associated posterior p(θa|Dn−1). In particular, we

will let ρna = E[R
(a)
n |θa] denote the expected rewards of pulling arm a at

time n which, as a function of the random variable θa, is itself a random

variable. Let qna denote the quantile function associated with this random

variable, i.e. it is the value such that Pr(ρna ≤ qna(p)) = p. Now, given this

quantile function and the current posterior associated with arm a we can

introduce the following index quantity

νna = qna(pn) where pn = 1− 1

n(logN)c
. (5.11)

Here c is some user defined quantity and N is a finite horizon. The probabil-

ity under the current posterior that the true expected reward exceeds νna is

of order 1/n, however this quantity can also be used as an upper confidence

bound on the true mean.

This specific strategy was introduced by [Kaufmann et al., 2012a]. In

this work the authors show that for the Beta-Bernoulli model and for any

ε > 0 and c ≥ 5, the number of draws from a suboptimal arm can be

logarithmically bounded, resulting in regret

Ln ≤
[∑
a∈Ā

(
1 + ε

DKL(ga, g∗)
+ ocε(1)

)
∆a

]
log n. (5.12)

Here the constant term depends on c and ε. As a result this strategy achieves

the same asymptotically optimal logarithmic rate as [Lai and Robbins, 1985].

124

Empirically, however, the authors find that c = 0 produces better results,

and we found this to be the case in our experiments as well.

Finally, we should note that while Kaufmann et al. call this approach

“Bayesian UCB”, in this work we will refer to this index as Bayesian Quantile-

based UCB (or Bayes-Q) to distinguish it from the approach of the next

subsection.

5.2.3 Bayesian UCB

Briefly, we can also introduce a related upper confidence approach that is a

more direct Bayesian extension of the UCB index introduced in Section 5.2.1.

Let µ̂na and σ̂2
na denote the mean and variance respectively of the random

variable ρna introduced in the previous section. I.e. these quantities repre-

sent the first two moments of the posterior expected reward. We can then

introduce the following index quantity:

νna = µ̂na + βnσ̂na

where βn is a sequence of constants which encourage exploration. In later

experiments we will use a sequence of constants βn of order O(
√

2 log(Kn2)).

This approach was originally introduced by [Srinivas et al., 2010] for the task

of Bayesian optimization, and as a result we will postpone further discussion

of this method until Chapter 6.

5.2.4 Thompson sampling

Finally, we can consider an alternative Bayesian approach known as prob-

ability matching, which departs from the idea of upper confidence bounds

and dates back to [Thompson, 1933]. The crux of this idea is to choose the

arm which has the greatest probability under the posterior of being optimal.

Conditioned on the data Dn−1 we can write this as

Pr(µa = µ∗|Dn−1) =

∫ {
ρna = max

a′
ρna′

}
p(ρn|Dn−1) dθ (5.13)

125

where p(ρn|Dn−1) is the joint posterior over all arm parameters means given

as a product of the individual, independent posteriors. Thompson originally

considered the problem of exactly computing this quantity in order to choose

between two alternative treatments. His work also introduced the idea of

approximating this probability using samples from the posterior, an idea

that is now more generally known as Thompson sampling. Based on this

idea we can consider, at each iteration, taking a single sample from the

posterior for each arm and taking the expected reward under these sampled

parameters, i.e.

θ(a)
n ∼ p(·|Dn−1) (5.14)

νna = E[R(a)
n |θ(a)

n] =

∫
r p(r|θ(a)

n) dr. (5.15)

We can easily see that the samples θ
(a)
n correspond to a Monte Carlo approx-

imation of the posterior where the maximization step corresponds exactly

to the maximization in Equation (5.13).

Given this approach, [Kaufmann et al., 2012b] show a bound on the

regret of this method that, for any ε > 0 there exists a problem-dependent

bound on the regret of the form

Ln ≤
[∑
a∈A

(
1 + ε

DKL(ga, g∗)

)
∆a

]
(log n+ log(log n)) + cε(µ1, . . . , µk). (5.16)

Here cε(· · ·) is a constant that depends on the expected reward of each arm.

We can see that this bound is quite similar to the bounds shown for Bayes-

UCB, even though Thompson is a stochastic procedure that is not based on

upper-confidence bounds. However, similar proof techniques were employed

in showing this bound.

Finally, this approach is also often much simpler, both computation-

ally and conceptually, than previous approaches. For the Beta-Bernoulli

example used throughout this section this only requires k draws from the

Beta posterior for each arm, where the expected reward is given exactly by

the sampled Bernoulli success probability. Compare this, alternatively, to

126

the use of quantiles presented in the previous subsection, which require an

expensive computation of the inverse incomplete beta function.

5.3 Empirical results for cumulative regret

In previous sections we considered a number of index policies and their asso-

ciated performance guarantees. In this section we will look at the empirical,

non-asymptotic performance of these policies with respect to their cumula-

tive regret. We first consider, in Figure 5.2 a two-armed Bernoulli bandit

problem as considered in [Kaufmann et al., 2012a] and vary the expected

reward of the two arms while maintaining a constant gap between them. For

the Bayesian approaches we used an independent, uniform [0, 1] prior over

the success probability θa for each arm. We also used a time horizon of 500

and repeated these experiments 1000 times. Each of the plots in Figure 5.2

shows a different setting of the expected rewards of each arm and plots the

cumulative regret of each policy versus iterations.

From this set of experiments we can see that when the probability of ob-

serving rewards is low, the Gittins policy performs significantly better than

all other policies. As rewards become more likely, however, both Thompson

and the Bayesian UCB approach using quantiles approach the performance

of Gittins. This makes sense: when rewards are more rare it is increasingly

more beneficial to plan further into the future. In contrast, we can also

see that the Bayesian UCB approach based on the variance term performs

better when the rewards are rare.

We are also interested in problems where the number of arms is greater

than just two. Figure 5.3 shows an experiment consisting of a 20-armed

bandit with arms whose expected rewards are linearly spaced in the range

[0.1, 0.8]. Here we consider a time-horizon of 10000 in order to test the longer

range effects of each policy, and we repeat each run 500 times. Here we see

that the quantile version of Bayesian UCB and Thompson sampling have

approximately the same performance. Both are very much out-performed by

Gittins, however we only show the first 1000 iterations of Gittins due to its

overwhelming computational costs with long horizons. We also omit error

127

0 100 200 300 400 500
Iterations

0

2

4

6

8

10
Cu

m
ul

at
iv

e
re

gr
et

Two arms [0.1 0.2]

UCB
BayesUCB-Q
BayesUCB
Thompson
Gittins

0 100 200 300 400 500
Iterations

0

2

4

6

8

10

Cu
m

ul
at

iv
e

re
gr

et

Two arms [0.3 0.4]

UCB
BayesUCB-Q
BayesUCB
Thompson
Gittins

0 100 200 300 400 500
Iterations

0

2

4

6

8

10

Cu
m

ul
at

iv
e

re
gr

et

Two arms [0.45 0.55]

UCB
BayesUCB-Q
BayesUCB
Thompson
Gittins

0 100 200 300 400 500
Iterations

0

2

4

6

8

10

Cu
m

ul
at

iv
e

re
gr

et

Two arms [0.7 0.8]

UCB
BayesUCB-Q
BayesUCB
Thompson
Gittins

Figure 5.2: Cumulative regret of various index policies for a two-
armed bandit with different reward distributions. Lower is bet-
ter.

bars for this plot as they proved to be quite small and added no additional

information.

5.4 Simple regret and pure exploration

In previous sections we considered the problem of choosing arms so as to

maximize the expected long-run gains made by our strategy. This is equiva-

lent to minimizing the expected regret the strategy accumulates with respect

to the unknown best arm. A result of this objective is that although the

128

0 2000 4000 6000 8000 10000
Iterations

0

50

100

150

200

250

300

350
Cu

m
ul

at
iv

e
re

gr
et

UCB
BayesUCB-Q
BayesUCB
Thompson
Gittins

0 2000 4000 6000 8000 10000
Iterations

0

200

400

600

800

1000

1200

Cu
m

ul
at

iv
e

re
gr

et

100 random arms in [0,1]

UCB
BayesUCB-Q
BayesUCB
Thompson
Gittins

0 2000 4000 6000 8000 10000
Iterations

0

500

1000

1500

2000

2500

3000

3500

4000

Cu
m

ul
at

iv
e

re
gr

et

1000 random arms in [0,1]

UCB
BayesUCB-Q
BayesUCB
Thompson
Gittins

Figure 5.3: Top: cumulative regret of various index policies for a 20-
armed bandit with rewards linearly spaced in the range [.1, .8].
Bottom: cumulative regret of various index policies for a 100-
and 1000-armed bandit with random expected rewards uni-
formly sampled in [0, 1]. For all plots, lower is better.

forecaster must explore different arms in an attempt to find the optimum, it

should not explore too often as that could otherwise lead to high cumulative

regret. While this objective is a good fit for many problems, we are often

instead faced with the problem of simply finding the best arm amongst a

set of candidates.

In this section we will assume an alternate setting which [Bubeck et al.,

2009] refers to as the problem of pure exploration:

129

For each round n = 1, 2, . . .

1. the decision maker chooses an action an ∈ A;

2. the decision maker observes reward rn;

after some round N the bandit process ends

3. the decision maker makes a recommendation iN ∈ A;

4. the decision maker receives reward rN+1.

In this setting the forecaster takes actions an and observes rewards rn for

N rounds following some strategy as in Algorithm 2. Along with actions an

drawn from some exploratory strategy the forecaster must also make rec-

ommendations in following a possibly different strategy. After this training

phase the forecaster will then enter a test phase wherein the quality of the

forecaster is judged only on the expected reward of the last recommenda-

tion. Following from the previous section we will introduce the regret of this

recommendation, i.e.

Sn = E[µ∗ − µIn]. (5.17)

This expectation is with respect to the distribution of the data Dn which

depends on the action selection strategy, as well as the recommendation

strategy which gives rise to in. Following [Bubeck et al., 2009] we will call

this quantity the simple regret.

5.4.1 Best arm identification

The problem of minimizing the simple regret differs from that of more tradi-

tional bandit approaches by explicitly dividing the exploration and exploita-

tion phases. Strategies which seek to minimize the cumulative regret such

as those in Section 5.2 can instead be thought of as as combining these two

phases. This is ultimately the reason why an optimal allocation strategy

must limit the number of pulls of suboptimal arms to be logarithmic. If the

strategy were to increase the number of pulls it could make to each arm it

might better be able to explore the arm distribution, however this would

in turn require more pulls of suboptimal arms and harm the forecaster in

130

terms of its cumulative regret.

The ideas of cumulative and simple regret are quite closely bound how-

ever. We can easily see that by using the same strategy for exploration and

exploitation the cumulative regret provides an upper bound on the simple

regret, i.e. Sn ≤ 1
nLn. Surprisingly, however, in [Bubeck et al., 2009] the

authors show that algorithms with at most logarithmic cumulative regret

have at least polynomial simple regret, i.e. they are bounded by a term of

order O(n−β) for some β > 0. Following on this result, in [Audibert and

Bubeck, 2010] the authors propose a modification of the UCB1 index of the

form

νna =


∞ if Tna = 0,

µ̂na +

√
An
Tna

otherwise.
(5.18)

This approach, which the authors dub UCBE, reduces to UCB1 when An is

of order log n. Letting ∆(i) be the distance between the ith best arm to the

best arm the authors instead propose a constant quantity An = A = 25
36
N−K
H1

where H1 =
∑

i ∆2
(i) is a measure of the “hardness” of the bandit problem

and N is a finite horizon. This approach encourages the algorithm to explore

more, and where this exploration is tempered by the hardness of the problem.

Let En be the probability of recommending a suboptimal arm En =

Pr(µIn < µ∗) one can bound the simple regret by

∆(2)En ≤ Sn ≤ ∆(k)En.

As a result, bounding the probability of error En provides a bound on the

simple regret Sn. Using the UCBE strategy, Audibert and Bubeck are then

able to show the following bound

En ≤ 2nK exp

(
−2A

25

)
(5.19)

which holds with high probability, and as a result bounds the simple regret

of the strategy.

131

5.4.2 Racing

The UCBE approach introduced in the previous section is, as with the ap-

proaches of Section 5.2 based on selecting arms with high upper confidence

bounds. The idea of racing algorithms instead maintains a set of active

arms and divides the process of arm selection into “races”. A race consists

of some number of rounds during which each active arm is pulled once. At

the end of a race, arms that have been judged suboptimal according to some

performance bound are then eliminated from the active set.

We will consider now a collection of arms and will introduce indicators

Ana and Sna denoting respectively whether arm a is active and whether

it has been selected yet in the current race. We can then introduce the

following simple index

νna = AnaSna. (5.20)

After each round, as long as there remain arms left in the race, i.e.
∑

a Sna >

1, we need not update the active arms An+1,a and can set Sn+1,a = 0.

Otherwise we must compute the active arms An+1 and start the next race,

i.e. by setting Sn+1 = An+1. The exact computation of An+1 will depend

on the performance bound used. Note also that the index used above is not

independently computed for each arm: this is to allow racing strategies to

compare arms when deciding which to eliminate.

With a description of this general strategy in place we can now turn

to the problem of deciding when to eliminate arms. [Maron and Moore,

1994], for example, proposed a strategy Hoeffding races based on the same

Chernoff-Hoeffding bound used in Section 5.2.1. We can then note that for

rewards in [0, b], with probability 1− δ we have a bound Bna on deviations

from the true mean,

|µa − µ̂na| ≤ Bna =

√
b2 log(2/δ)

2Tna
.

This bound can be directly translated into an elimination strategy for racing.

Let a∗n = arg maxa µ̂na be the currently estimated best arm, then at the end

132

of a race we can update the active set as

Ana =

1 if µ̂na +Bna ≥ µ̂na∗ −Bna∗ ,
0 otherwise.

I.e. we are eliminating those arms whose upper bound is less than the lower

bound of the best arm. Similar approaches can be taken based on other

bounds, [e.g., Mnih et al., 2008]. Finally, although the Hoeffding-based

strategy introduced above relies upon frequentist statistics, we could also

consider a Bayesian version of these racing strategies involving posterior

bounds on the reward.

5.4.3 A Bayesian approach

We can now return to the Bayesian setting and in particular introduce a

policy which is in some sense a modification of Gittins’ index made in order

to attack the problem of simple regret. The modification that we are about

to introduce was proposed by [Hay et al., 2012], however we will see that

it is a relatively simple modification of the value function discussed earlier

when we introduced Gittins.

We will first return to the MDP formulation of Section 5.1 and modify

the actions to include a “stopping” action such that only upon taking this

action do we receive rewards given by the expected return of the best arm.

Given a set of arms A and sufficient statistics X for each of k arms we can

summarize these changes as follows:

• an action space A∪{⊥} where following the notation of Hay et al. we

use ⊥ to indicate the stopping action;

• a state space X k consisting of the sufficient statistics for each arm;

• deterministic rewards given by

r(xn, an) =

maxa∈A E[R|xn, a] if an = ⊥
−c otherwise

133

where c indicates a cost for taking a non-stopping action; if a stopping

action is taken the reward is given by the the best expected reward

under the posterior statistics xna;

Note that the primary change here is the use of the stopping action in

the reward function. This allows us to plan into the future, keeping in

mind however that ultimately we’re only interested in obtaining a single

arm recommendation. Once we stop, this recommendation will be given by

the arm with highest posterior mean. We should also return to a point we

made earlier for the Gittins approach: this MDP is used only to plan actions

into the future in order to select the best action to take at the current time

step. In other words, when applying this approach to the problem of online

planning we will employ an index quantity νna such that this MDP will be

used to calculate the future expected rewards of action a.

We can now introduce the index quantity that we will consider: namely

for each arm a we will compute the value of a one-armed bandit with refer-

ence arm given by the expected reward of the best alternative arm. In this

section we will consider a finite-horizon problem, in which case we can write

this quantity as

νna = VN−n(xna, arg max
a′ 6=a

µ̂na′), (5.21)

where V is computed in the same way as in Section 5.1. Intuitively this

means that for each arm a we are considering the value of gaining more

information about that arm and possibly stopping at a later time step, or

instead stopping and taking the best alternative arm. This also means that

this has the same complexity as a single call to the difference quantity used

to compute Gittins, i.e. O(N2). In [Hay et al., 2012] the authors refer to

this as a blinkered policy due to the way that the index quantity compares

against the best alternative arm but otherwise only considers whether to

pull the ath arm or to stop.

134

5.5 Empirical results for simple regret

In the previous section we introduced the problem of pure exploration as well

as the simple regret measure. In this section we will look at the empirical,

non-asymptotic performance of these policies with respect to their simple

regret. We will also include some of the strategies designed for cumulative

regret in order to ascertain their performance—even though these strategies

provably do not explore enough to obtain exponentially small probability

of error. Following on the previous experiments section, we will continue

testing with Bernoulli bandits, and for the Bayesian approaches we will use

independent, uniform [0, 1] prior over the success probability θa of each arm.

We also used the true, empirical hardness H1 of each problem in defining the

exploration strategy for UCB-E. While this would not generally be known

in practice, we wanted to see the optimal performance of this algorithm; as

well we also found it to be relatively robust to this parameter. Finally, we

repeat each experiment 1000 times to compute the expected regret curves.

We first consider, in Figure 5.4 the simple regret of a 20 armed bandit

with means linearly spaced in [0.1, 0.9]. The leftmost of these two plots

displays the regret over 1000 iterations, and the rightmost displays the re-

gret over 10000 iterations. This was done to accommodate the Gittins and

Blinkered strategies. For the first plot, we see that with this time-horizon,

all of the strategies perform comparably. As we will see going forward, the

Hoeffding races strategy performs worst. We also note the relatively poor

performance of the Blinkered strategy, however this may be due to a poor

tuning of the c parameter, and due to the the relatively slow speed of this

algorithm this parameter was difficult to tune properly. Also of note is the

performance of BayesQ, which as we will continue to see in this section does

surprisingly considering it is not tuned to the problem of pure exploration.

When moving on to the longer time-horizon, we see that UCB-E performs

very well, although surprisingly both UCB and BayesUCB do as well. Fi-

nally we note that we have not included error bars for the plots in this

section. This is because we are mostly concerned with the performance of

the methods in expectation, and the error bars did not provide much ad-

135

0 200 400 600 800 1000
Iterations

10-3

10-2

10-1

100
Si

m
pl

e
re

gr
et

UCB
BayesUCB-Q
BayesUCB
Thompson
UCB-E
Hoeffding
Gittins
Blinkered

0 2000 4000 6000 8000 10000
Iterations

10-4

10-3

10-2

10-1

100

Si
m

pl
e

re
gr

et

UCB
BayesUCB-Q
BayesUCB
Thompson
UCB-E
Hoeffding

Figure 5.4: Simple regret for various bandit strategies with 20 arms,
linearly spaced in [0.1, 0.9]. The left plot restricts the time hori-
zon to 1000 in order to show the behavior of Gittins and Blink-
ered. The right plot extends this horizon to 10000. For both
plots, lower is better.

ditional information aside from obscuring the performance of the different

methods.

We next consider the same 20 arms, with means linearly spaced in [.1, .9],

except now we augment these arms with 100 additional arms. The results

of these experiments are shown in Figure 5.5. The first of these plots uses

100 additional arms with mean .1, the second 100 arms with mean .5, and

the last 100 arms with mean .7. With an optimal arm of mean .9, this

is in order to the performance of the algorithms with a large number of a

suboptimal arms, for varying degrees of suboptimality. We can see that with

very suboptimal arms (the first plot), the results of the previous experiment

are essentially unchanged. We can see in the second plot, however, that

by increasing the difficulty that BayesQ and Thompson sampling become

increasingly attractive options, although they are ultimately beat by UCB-

E. By increasing the difficulty more we see the same trend continuing, i.e.

BayesQ performs quite well initially, but it is ultimately beaten by UCB-E.

Finally, in Figure 5.6 we show the performance of these methods using

200 arms, with means linearly spaced in [0.1, 0.9]. This experiment has

many similarly performing arms, both in terms “good” and “bad” arms.

136

Low difficulty

0 2000 4000 6000 8000 10000
Iterations

10-4

10-3

10-2

10-1

100

Si
m

pl
e

re
gr

et
UCB
BayesUCB-Q
BayesUCB
Thompson
UCB-E
Hoeffding

Medium difficulty

0 2000 4000 6000 8000 10000
Iterations

10-4

10-3

10-2

10-1

100

Si
m

pl
e

re
gr

et

UCB
BayesUCB-Q
BayesUCB
Thompson
UCB-E
Hoeffding

High difficulty

0 2000 4000 6000 8000 10000
Iterations

10-4

10-3

10-2

10-1

100

Si
m

pl
e

re
gr

et

UCB
BayesUCB-Q
BayesUCB
Thompson
UCB-E
Hoeffding

Figure 5.5: Simple regret for various bandit strategies with 120 arms
of varying degrees of difficulty. All three experiments include
20 arms, linearly spaced in [.1, .9]. The first plot includes an
additional 100 arms with mean .1, the second 100 arms with
mean .5, and the last plot includes 100 additional arms with
mean .7. For all plots, lower is better

137

0 200 400 600 800 1000
Iterations

10-2

10-1

100
Si

m
pl

e
re

gr
et

UCB
BayesUCB-Q
BayesUCB
Thompson
UCB-E
Hoeffding
Gittins
Blinkered

0 2000 4000 6000 8000 10000
Iterations

10-3

10-2

10-1

100

Si
m

pl
e

re
gr

et

UCB
BayesUCB-Q
BayesUCB
Thompson
UCB-E
Hoeffding

Figure 5.6: Simple regret for various bandit strategies with 200 arms,
linearly spaced in [0.1, 0.9]. The left plot restricts the time hori-
zon to 1000 in order to show the behavior of Gittins and Blink-
ered. The right plot extends this horizon to 10000. For both
plots, lower is better.

We first (the leftmost plot) consider a time horizon of 1000 in order to

consider Gittins and Blinkered. Here, surprisingly we note the excellent

performance of Gittins. This is, however, not entirely shocking as with

this many arms and this few iterations the strategies tuned for cumulative

regret are also quite exploratory. However, even when we extend this to

10000 iterations (the rightmost plot) we see that BayesQ and Thompson

perform very well, even beating UCB-E. This may very well be due to the

fact that with so many arms and only this many iterations, in order to

perform well it is worthwhile to give up on attaining a vanishing probability

of error and instead focus more on exploitation. We still see, however, that

these Bayesian methods as in the previous section tend to perform very well

as compared to, for example, UCB.

5.6 Chapter summary and conclusions

This chapter served as a literature review of bandit methods, but also serves

as a prelude to the methods we will introduce in the next chapter. Here we

first introduced the multi-armed bandit problem and provided a detailed

discussion of the classical method of [Gittins, 1979] solving this problem in

138

the Bayesian setting. However, due to the complexity of solving for the Git-

tins index before each arm pull, we introduced a number of alternative index

strategies from the literature and discussed their approximation guarantees.

We then went on to empirically compare the performance of these methods.

In this setting we saw that the bound strategies based of Bayesian methods

tend to outperform strategies such as UCB based on frequentist bounds. We

attribute this primarily to these methods’ ability to more quickly integrate

information obtained from the arm pulls, as well as the use of quantiles in

BayesQ.

We then introduced the problem of pure exploration, which corresponds

to splitting the problem into an exploration and exploitation phase. This

framework is particularly interesting as it directly applies to the problem

of discrete optimization where each of the arm pulls corresponds to a noisy

sample of some parameter of interest. We will see that this directly leads

into the problem of Bayesian optimization that we will turn to in Chapter 6.

We then introduced a number of methods from the literature for solving

this problem. In testing this we found that UCB-E performs quite well

at optimizing this objective. However, based on the model we also found

that the Bayesian methods for cumulative regret also work surprisingly well,

particularly in situations where there are many similarly performing arms.

This leads us to believe that a very interesting line of future research is in

developing a Bayesian version of UCB-E, similar to BayesQ.

139

Chapter 6

Bayesian optimization with

acquisition portfolios

Bayesian optimization is a powerful strategy for finding the extrema of ob-

jective functions that are expensive to evaluate. It is applicable in situations

where one does not have a closed-form expression for the objective function,

but where one can obtain noisy evaluations of this function at sampled val-

ues. It is particularly useful when these evaluations are costly, when one does

not have access to derivatives, or when the problem at hand is non-convex.

In fact, as we will see in this chapter these methods are quite closely related

to those of bandit approaches. Like the Bayesian bandits introduced in the

previous chapter, Bayesian optimization uses the history of sampled values

to compute a posterior distribution over the unknown, underlying objective

function. Unlike standard bandit problems however, Bayesian optimization

is typically applied to problems with correlated arms—often continuous.

Finally, analogous to the index strategies of the previous section, Bayesian

optimization relies on an acquisition function with which to select the next

sample point and trade off between exploration and exploitation.

The term Bayesian optimization was coined in the seventies by [Močkus

et al., 1978], but a variation on the method has also been known as Ef-

ficient Global Optimization (EGO) in the experimental design literature

since the nineties [Jones et al., 1998]. Bayesian optimization techniques are

140

also some of the most efficient approaches in terms of the number of func-

tion evaluations required. In recent years, the machine learning community

has increasingly used Bayesian optimization to optimize expensive objective

functions. Examples can be found in robot gait design [Lizotte et al., 2007],

online path planning [Martinez-Cantin et al., 2007, 2009], intelligent user

interfaces for animation [Brochu et al., 2007, 2010a], algorithm configura-

tion [Hutter, 2009], efficient MCMC [Rasmussen, 2003], sensor placement

[Osborne, 2010, Srinivas et al., 2010], and planning [Brochu et al., 2010b].

See also the thesis of [Brochu, 2010] for a detailed overview of this area.

In this chapter we will give an overview of Bayesian optimization and

make notes as to how these approaches relate to the bandit methods in-

troduced in the previous chapter. This will include the introduction of a

number of acquisition functions, which again are similar in spirit to the def-

inition of allocation strategies for bandits. The key argument that we will

make in this chapter is the choice of acquisition function is not trivial, and

in fact of the various acquisition functions proposed in the literature, none

work well for all classes of functions. Instead, we will show that mixing over

different such strategies will tend to outperform any one acquisition strat-

egy. In particular, we will propose a solution to this problem that is similar

to the bandit strategies introduced in the previous section. Essentially we

propose an acquisition strategy to select amongst acquisition strategies. In

this chapter we evaluate the empirical behavior of this meta-strategy on

synthetic experiments (so that we can assess the effect of dimensionality), a

suite of optimization problems borrowed from the global optimization liter-

ature (some of which are repeatedly cited as being very hard) and a hard,

nonlinear, 9D continuous Markov decision process with a reward that has

many modes and relatively large plateaus in between. The nature of the

reward function in the control problem will cause gradient methods to do

much worse than the Bayesian optimization strategies. Finally, this chapter

will also present a theoretical analysis of the proposed techniques.

We review Bayesian optimization and popular acquisition functions in

Section 6.1. In Section 6.2, we propose the use of various hedging strategies

for Bayesian optimization [Auer et al., 1998, Chaudhuri et al., 2010]. In

141

Section 6.3, we present experimental results using standard test functions

from the literature of global optimization. The experiments show that the

proposed hedging approaches outperform any of the individual acquisition

functions. We also provide detailed comparisons among the hedging strate-

gies. Finally, in Section 6.4 we present a bound on the cumulative regret

which helps provide some intuition as to algorithm’s performance.

6.1 Bayesian optimization

Consider now the broad task of optimizing some function f defined over a

general space A,

x∗ = arg max
x∈A

f(x). (6.1)

In particular we are interested in the task of optimizing this function when

we only have noisy access to f(x), instead we can only make observations

of the form y ∼ g(·|x). As in the previous chapter we will consider the task

of optimizing this function sequentially, letting Dn = (x1:n, y1:n) denote the

data obtained after n queries to the objective function. We can then define

a prior p(f) in function space and conditioned on this function can write

the likelihood of our data as p(Dn|f) = p(Dn|f(x1), . . . , f(xn)). These two

terms can be combined to obtain the posterior

p(f |Dn) ∝ p(Dn|f) p(f). (6.2)

The posterior captures the updated beliefs about the unknown objective

function. One may also interpret this step as estimating the objective func-

tion with a surrogate function (also called a response surface).

The approach of Bayesian optimization then relies on maintaining this

posterior distribution and further defining an acquisition function ν(x|Dn)

such that the next point selected is xn+1 = arg maxx∈A ν(x|Dn). Pseudo-

code describing this approach is shown in Algorithm 4. We can also note

that this formulation is general enough to encompass the Bayesian strategies

of the previous chapter. Consider, for example, optimizing over a discrete

142

space A = {x1, . . . , xK} and an independent prior

p(f) =
K∏
a=1

p(f(xa)).

The function evaluations f(xa) correspond exactly to the expected rewards

µa with posterior predictions p(f(xa)|Dn) corresponding to the random vari-

able ρna for each arm. Unlike the setting of the previous chapter, however,

we will now focus on the problem of continuous arms and as a result we

will consider correlations between arms in order to take advantage of any

smoothness in the underlying function.

Throughout the rest of this chapter we will assume a d-dimensional con-

tinuous spaceA ⊆ Rd with function evaluations subject to additive Gaussian

noise. Other observation models are possible [e.g., Brochu et al., 2010b, Chu

and Ghahramani, 2005, Diggle et al., 1998, Rue et al., 2009], but we will

focus on real, Gaussian observations for ease of presentation. In particu-

lar if xn is the nth sample point we will assume observations of the form

yn = f(xn) + εn with independent noise εn ∼ N (0, σ2).

In order to capture the continuous nature of the underlying function we

will place a Gaussian process (GP) prior on f . This prior captures the fact

that for smooth objective functions, data with high variance or oscillations

should be considered less likely than data remains near the mean. Here,

the level of smoothness is controlled by the prior’s hyperparameters. Other

nonparametric priors over functions, such as random forests, have been con-

sidered [Brochu et al., 2010b], but the GP strategy is the most popular

alternative. We will give a brief description of this model in Section 6.1.1

and in Section 6.1.2 we will describe various acquisition functions that take

advantage of this posterior.

6.1.1 Gaussian processes

A Gaussian Process (GP) is a stochastic process corresponding to a collec-

tion of random variables where any finite number of these variables has a

joint Gaussian distribution. In this chapter we will use a zero-mean GP as

143

Algorithm 4 Bayesian Optimization

1: for n = 1, 2, . . . do
2: Select xn = arg maxx∈A ν(x|Dn−1)
3: Sample the objective function yn ∼ g(·|xn) (i.e. sample f(xn) + εn)
4: Augment the data Dn = Dn−1 ∪ (xn, yn)
5: end for

6: return the incumbent, x+ = arg max{xn} µ(xn)

a prior distribution over functions, written

f(x) ∼ GP(0, k(x, x′))

with covariance function k. For any collection of points x1:n let f1:n de-

note the random variables associated with the corresponding function eval-

uations and let K be a kernel matrix consisting of pairwise covariances

Kij = k(xi, xj). We can then write the prior density of the function evalu-

ations as

f1:n ∼ N (0,K). (6.3)

Finally, we should note that although throughout this chapter we will assume

a zero-mean prior, this choice is purely for convenience and without loss

of generality. For examples of nonzero means, see [Brochu et al., 2010a,

Martinez-Cantin et al., 2007]; see also the work of [Rasmussen and Williams,

2005] for an extended description of GPs in general.

With the choice of a GP prior in place we are now left with the question

of selecting the covariance function k. A very popular choice is the squared

exponential kernel

k(x, x′) = exp
(
− 1

2(x− x′)TA(x− x′)
)
, (6.4)

for some symmetric matrix A. One possible choice for the “distance” matrix

that we will use in this work is that of A = diag(`)−2 for some vector `. Such

a vector implements automatic relevance determination (ARD) where the

size of the length scales `i determine how relevant the ith dimension is. The

precise choice of these hyperparameters will be discussed in the experimental

144

section, but we note that it is not trivial in Bayesian optimization because

of the paucity of data. For an in depth analysis of this issue we refer the

reader to [Brochu et al., 2010a, Osborne, 2010].

Now, assuming that we have obtained observations Dn = (x1:n, y1:n), we

are often faced with the problem of predicting the value f∗ of some arbitrary

sample point x∗. Letting y1:n denote the observed values of the previously

sampled points we can note that the vector of function values is jointly

Gaussian [
y1:n

f∗

]
∼ N

(
0,

[
K + σ2I k∗

kT∗ k(x∗, x∗)

])
,

where k∗ = [k(x1, x∗), . . . , k(xn, x∗)]
T is the vector of covariances between

x1:n and x∗ and again K is the matrix of cross-covariances with Kij =

k(xi, xj). Note also the addition of the noise term σ2I, due to the fact that

the observations have both covariance via to the underlying function evalua-

tions and are also observed with additive Gaussian noise. The variance term

corresponding to the sample point x∗, however, does not include this noise

term because we are trying to predict f∗, not the corresponding observation

y∗. Now, using the Sherman-Morrison-Woodbury formula, [see Rasmussen

and Williams, 2005, for a comprehensive treatment] one can easily arrive at

an expression for the predictive distribution

Pr(f∗|Dn, x∗) = N (f∗|µn(x∗), σ
2
n(x∗))

where the predictive mean and variance are given by

µn(x∗) = kT∗ [K + σ2I]−1y1:n,

σ2
n(x∗) = k(x∗, x∗)− kT∗ [K + σ2I]−1k∗.

In this sequential decision making setting, the number of query points is

relatively small and, consequently, the GP predictions are easy to compute.

145

6.1.2 Acquisition functions

The role of the acquisition function is to guide the search for the opti-

mum. Typically, acquisition functions are defined such that high values

correspond to potentially high values of the objective function, whether be-

cause the prediction is high, the uncertainty is great, or both. Again, as

we have noted previously this quantity has an analogous role to that of

the index quantities introduced in the previous chapter. Just like the allo-

cation indices, the acquisition function is maximized at every iteration in

order to select the next point at which to evaluate the objective function,

i.e. xn+1 = arg max ν(x|Dn). However, unlike the previous chapter although

this quantity is known and easy to evaluate, it is generally a continuous func-

tion of x. Rather than utilizing a direct discrete maximization, optimization

of this term can instead be easily carried out with standard numerical tech-

niques. Common approaches include sequential quadratic programming or

LBFGS [see Nocedal and Wright, 1999] or global optimization methods such

as the DIRECT algorithm of [Jones et al., 1993]. Finally, we note that the

acquisition function is sometimes called the infill or simply the “utility”

function. In the following sections, we will look at the three most popular

choices. Figure 6.1 shows how these give rise to distinct sampling behavior.

Probability of improvement

Let x+
n = arg max{xi} µn(xi) denote the current incumbent, i.e. the previ-

ously sampled point with the highest posterior mean. Early work of [Kush-

ner, 1964] suggested using as acquisition function the probability of improve-

ment (PI) over this incumbent. Strictly using this rule would, however, be

biased towards exploitation as the algorithm is more likely to continually

explore small regions around the current incumbent. To remedy this, Kush-

ner recommends using instead improvement over the incumbent plus some

trade-off parameter ξ ≥ 0. We can then write the acquisition function as

νpi(x|Dn) = Pr(f(x) ≥ µn(x+
n) + ξ)

146

Figure 6.1: Acquisition functions with different values of the explo-
ration parameter ξ. The GP posterior is shown at the top.
The other images show the acquisition functions for that GP.
From the top: Probability of improvement, expected improve-
ment and GP-UCB. The maximum of each acquisition function,
where the GP is to be sampled next, is shown with a triangle
marker. Note the increased preference for exploration exhibited
by GP-UCB.

147

which under the GP posterior, where Φ is the cumulative distribution func-

tion (CDF) of a standard Normal, reduces to

= 1− Φ

(
µn(x+

n) + ξ − µn(x)

σn(x)

)
≡ µn(x)− µn(x+

n)− ξ
σn(x)

. (6.5)

Here we have also noted that since the CDF is a monotonic increasing trans-

formation, the left and right equations in (6.5) have equivalent maxima1.

The exact choice of ξ is left to the user. Kushner anecdotally recommends

using a schedule for ξ which should start high in order to drive exploration

and decrease towards zero as the algorithm progresses. Empirical studies

of [Lizotte, 2008], however, found that using such a schedule did not offer

improvement over a constant value of ξ on a suite of test functions.

Expected improvement

More recent work has tended to take into account not only the probabil-

ity of improvement, but the magnitude of improvement a point can poten-

tially yield. As an example of this approach, [Močkus et al., 1978] proposed

maximizing the expected improvement (EI) with respect to the current in-

cumbent. For our Gaussian process posterior, one can easily evaluate this

expectation, [see Jones, 2001], yielding:

νei(x|Dn) = E[f(x)− f(x+
n)|Dn]

=

aΦ(aσ−1
n (x)) + σn(x)φ(aσ−1

n (x)) if σn(x) > 0,

0 if σn(x) = 0

where a = µn(x) − µn(x+
n) − ξ and where φ and Φ denote the density and

cumulative density of the standard Normal distribution respectively. Again,

ξ is an optional trade-off parameter analogous to the one defined above.

1Note, that in the thesis of [Lizotte, 2008] there is a minor error in reporting the form
of PI, wherein the quantity inside the evaluation of the Normal CDF is multiplied by −1.

148

Upper confidence bounds

As we saw in the previous chapter, upper confidence bounds have a long

history of being used for online optimization, dating back to the work of [Lai

and Robbins, 1985]. In a similar vein in the Bayesian optimization literature,

[Cox and John, 1997] introduced an algorithm they call “Sequential Design

for Optimization” (SDO). Given a random function model, SDO selects

points for evaluation based on a confidence bound consisting of the mean

and weighted variance: µ(x) + κσ(x), which we can see also bears striking

similarities to the UCB1 method of [Auer et al., 2002]. As with the other

acquisition models, however, the parameter κ is left to the user.

More recently, a principled approach to selecting this parameter is pro-

posed by [Srinivas et al., 2010] drawing directly on the earlier work of Auer

et al. In this work, the authors define the instantaneous regret of the se-

lection algorithm as f(x∗) − f(x), i.e. a continuous generalization of the

instantaneous regret defined in the previous chapter. They then attempt to

select a sequence of weights κt so as to minimize the cumulative regret. Us-

ing a sequence of weights βt and an exploration parameter ξ, we can define

the UCB acquisition function as

νucb(x|Dn) = µn(x) +
√
ξβt σn(x).

It can be shown, with high probability, that this method has cumulative re-

gret bounded by O(
√
NβNγN). Here βN is a carefully selected learning rate

and γN is a bound on the information gained by the algorithm at selected

points after N steps. Both of these terms depend upon the particular form

of kernel-function used, but for most kernels their product can be shown to

be sublinear in N . We refer the interested reader to the original paper of

Srinivas et al. for exact bounds for a variety of kernels. Interestingly, the√
N behavior of this bound is similar to bounds for an alternative extension

of bandit methods to the problem of continuous arms, [see e.g. Bubeck et al.,

2011].

Finally, the sublinear bound on cumulative regret implies convergence

of the method, namely that limN→∞ LN/N = 0. This in turn provides a

149

bound on the convergence rate for the optimization process, since the regret

at the maximum f(x∗)−maxn f(xn) is upper bounded by the average regret

1

N
LN = f(x∗)− 1

N

∑N
n=1f(xn).

As we will note later, however, this bound can be loose in practice. Further,

as we will note later the problem of Bayesian optimization, as an optimiza-

tion problem, is more concerned with minimizing the simple regret than the

cumulative regret. As a result, good bounds on the cumulative regret may

imply that the algorithm is in some sense not exploring enough.

6.2 Portfolio strategies

In this section we claim that there is no choice of acquisition function that

can be guaranteed to perform best on an arbitrary, unknown objective. We

will empirically study this claim later in this chapter, however we will first

make this claim as an appeal to intuition. While studying the objective

might allow an expert to make an educated guess, even this can be difficult

as Bayesian optimization is normally used specifically when sampling the

objective is expensive. In fact, it may be the case that no single acquisition

function will perform the best over an entire optimization—a mixed strategy

in which the acquisition function samples from a pool (or portfolio) at each

iteration might work better than any single acquisition. This can be treated

as a problem of decision making with expert advice, where each of acquisi-

tion functions corresponds to an expert (similar to the arms of the previous

chapter). In turn, each of these experts is making recommendations with

respect to an underlying infinite-armed bandit, i.e. the objective function

of Bayesian optimization. In this section we propose the novel approach of

solving this selection problem using three strategies from the literature.

6.2.1 Making decisions with expert advice

Let K be a set of M experts, which in this section will coincide with the

choice of acquisition function. We can now consider the problem of making

150

decisions with the advice of these experts.

For each round n = 1, 2, . . .

1. the environment chooses rewards r
(i)
n for each expert;

2. the decision maker chooses to follow advice in ∈ K;

3. the decision maker receives reward rn = r
(in)
n for the chosen ex-

pert;

4. the decision maker observes rewards r
(i)
n for each expert.

Where the goal is to maximize the rewards rn. Here, we can easily see that

Steps 2–3 coincide exactly with the bandit problem. The key differences are

first, upon choosing some expert i the decision maker receives the reward

for that expert but also then observes rewards for all other experts. This

setting is known as full information which distinguishes it from the bandit

or partial information setting. The second key difference with the previous

chapter is that the rewards are not assumed to be drawn from some unknown

distribution and are instead assumed to be chosen arbitrarily. This condition

is often known as the non-stochastic or adversarial setting.

As a result of these two conditions we can now note that the general

problem of utilizing expert advice can be seen as one governed by two axes,

one being whether or not the problem is stochastic or adversarial, with the

other axis being that of full versus partial information. With this in mind

we can see that the bandit strategies of the previous chapter are stochastic

(non-adversarial) with partial information. This also points to why these

algorithms are not applicable to the problem at hand, i.e. that of select-

ing amongst a set of acquisition functions. While the additive noise of εn

is assumed to have some fixed distribution the recommendations of each

acquisition function also consist of a non-stochastic component due to the

underlying function evaluations f(xn). We will return to this problem in the

next section where we explicitly apply these methods to the meta-problem

of acquisition function selection.

151

The Hedge algorithm of [Freund and Schapire, 1995] is an algorithm

which solves the problem of following expert advice with full information

and adversarial rewards. See also the later work of [Auer et al., 1998]. In

essence, the algorithm maintains a vector gni of the cumulative rewards for

each expert i up to round n. At every iteration the algorithm then follows the

advice of expert i with probability pni ∝ exp(ηgn−1,i) for some exploration

parameter η. Note that unlike the previous chapter the action selection is

probabilistic, due in part to the fact that the rewards can be adversarial.

[Auer et al., 1998] also proposed the Exp3 algorithm, a variant of Hedge

that applies to the partial information (i.e. bandit) setting. Note that this

is equivalent to removing Step 4 from the problem described above. Rather

than abandoning the approach of Hedge entirely, Exp3 uses this algorithm

as a subroutine using simulated rewards r̂ni for each expert i. Letting p̂ni be

the distribution with which Hedge would have selected actions, upon taking

action in and receiving reward rn, Exp3 then updates Hedge with rewards

r̂ni =

rn/p̂ni if i = in,

0 otherwise.

Finally, Exp3 selects actions according to a distribution that is a mixture

between p̂ni and a uniform distribution. Intuitively this ensures that the

algorithm does not miss good actions because the initial rewards were low

(i.e. it continues exploring). The mixing constant of this distribution is an

exploration factor similar to η.

Another possible strategy is the NormalHedge algorithm of [Chaudhuri

et al., 2009]. If we let gn =
∑

i pni gni denote the expected gain of a hedg-

ing algorithm, we can introduce let Lni =
∑

n gni − gn as the cumulative

regret of the ith expert. We can then easily see that Hedge elects to follow

each expert with probability proportional to exp(ηLni). The strategy of

NormalHedge, however, uses a similar strategy as Hedge, but instead uses

probabilities of the form pni = exp(L2
ni/2cn) for some adaptive scale pa-

rameter cn. The key property of this method is the selection of the scale

parameter, which is performed adaptively based on the regret seen thus far.

152

This method, however, is built to take advantage of situations where the

number of experts is large, and may not be a good match to problems where

M is relatively small, i.e. the situation we find ourselves in when selecting

acquisition functions.

6.2.2 Bayesian optimization with expert advice

We can now consider the problem of performing Bayesian optimization with

a portfolio K consisting of M different acquisition functions. In order to

tackle this problem, at every iteration n we will follow the recommendation

of strategy i ∈ K with probability pni and adapt the approaches of the pre-

vious subsection in order to update this probability. The general approach

of Bayesian optimization with portfolios is shown in Algorithm 5.

Algorithm 5
General procedure for performing Bayesian optimization using a portfolio of
acquisition functions. The exact form of the algorithm will depend on the
method used to update the expert selection probabilities in Step 8.

1: Initialize the gains, g0i = 0 for each i
2: Initialize the probabilities, p1i = 1

M for each i
3: for n = 1, 2, . . . do
4: Nominate points from each acquisition function:

x
(i)
n = arg maxx νi(x|Dn−1)

5: Select nominee xn = x
(i)
n with probability pni

6: Sample the objective function yn = f(xn) + εn
7: Augment the data Dn = Dn−1 ∪ (xn, yn) and update the GP
8: Update gains gni and probabilities pn+1,i

9: end for

The easiest algorithm to make use of is that of Exp3. Let x
(i)
n ∈ A be the

next point proposed by the ith acquisition function. With probability pni we

will select this acquisition function, i.e. by letting xn = x
(i)
n and obtaining

an observation yn = f(x
(i)
n)+εn. We can then use yn as the observed reward

for following the ith expert (analogous to pulling the ith arm) and update

the gains gni and hence the probabilities pn+1,i that will be used in the next

round. Alternatively, after updating the GP with the data pair (xn, yn) we

153

can use as reward the updated mean of the GP evaluated at the selected

point, i.e. µn(xn). In some sense this is a more natural reward to make use

of, as the “meta” algorithm (i.e. Exp3 in this case) is selecting points based

on their effect on the underlying Gaussian process.

With this in mind we can now propose a reward model that allows us

to make use of the full-information approaches, Hedge and NormalHedge.

Just as with Exp3, both hedging strategies maintain a probability pni with

which a single expert xn = x
(i)
n is selected. We can again define the reward

rn = µn(xn) obtained by this strategy. For the hedging strategies we can

define rewards observed for all other strategies as r
(i)
n = µn(x

(i)
n). In other

words after selecting the single point xn and making an observation yn at

this point we will update the GP and “observe” the updated mean at all

other proposed points based on this new information. There is however still

information gained at these unselected points due to the covariance structure

of the GP prior.

We will also note that the setting of our problem is somewhere “in be-

tween” the full and partial information settings. Consider, for example, the

situation that all points sampled by our algorithm are “too distant” in the

sense that the kernels evaluated at these points exert negligible influence on

each other. In this case, we can see that only information obtained by the

sampled point is available, and as a result GP-Hedge will be over-confident

in its predictions when using the full-information strategy. However, this

behavior is not observed in practical situations because of smoothness prop-

erties, as well as our particular selection of acquisition functions. In the

case of adversarial acquisition functions one might instead choose to use the

Exp3 variant.

In practice any of the above allocation strategies could be used, however

in our experiments we will find that Hedge tends to outperform the others.

In later experiments we will use GP-Hedge to denote this combination of

Bayesian optimization with the Hedge algorithm.

Finally, note that in contrast to the standard approach Bayesian opti-

mization by using any of these strategies it is necessary to optimize each of

the M acquisition functions at each time step rather than just 1. While this

154

might seem expensive, this is unlikely to be a major problem in practice for

small M , as (i) Bayesian optimization is typically employed when sampling

the objective is so expensive as to dominate other costs; (ii) it has been

shown that fast approximate optimization of the acquisition functions ν are

usually sufficient [Brochu et al., 2010b, Hutter, 2009, Lizotte, 2008]; and

(iii) it is straightforward to run the optimizations in parallel on a modern

multicore processor.

6.3 Experiments

To validate the use of GP-Hedge, we tested the optimization performance

on a set of test functions with known maxima f(x∗). To see how effective

each method is at finding the global maximum, we use the “gap” metric [see

Huang et al., 2006], defined as

Gn =
[
f(x+

n)− f(x1)
]/[

f(x∗)− f(x1)
]
,

where again x+
n is the incumbent or best sample point found up to time n.

The gap Gn will therefore be a number between 0 (indicating no improve-

ment over the initial sample) and 1 (if the incumbent is the maximum).

Note, while this performance metric is evaluated on the true function val-

ues, this information is not available to the optimization methods. Finally,

we should also note that this metric is also a normalized version of the simple

regret of the previous chapter.

6.3.1 Standard test functions

We first tested performance using functions common to the literature on

Bayesian optimization: the Branin, Hartman 3, and Hartman 6 functions.

All of these are continuous, bounded, and multimodal, with 2, 3, and 6

dimensions respectively. See the work of [Brochu, 2010, Lizotte, 2008] for

further information and definition of these test functions. These functions

have been proposed by [Dixon and Szegö, 1978] as benchmarks for com-

paring global search methods and are widely used for this purpose, [Jones

155

et al., 1993]. For each experiment, we optimized 25 times and computed the

mean and variance of the gap metric over time. In these experiments we

used hyperparameters θ chosen offline so as to maximize the log marginal

likelihood of a (sufficiently large) set of sample points [see Rasmussen and

Williams, 2005]. Note that in the synthetic functions, for each trial, we

sample a different function and optimize it using the different techniques, so

each plot shows the mean result over 25 different functions, with one trial

each.

We compared the standard acquisition functions using parameters sug-

gested by previous authors, i.e. ξ = 0.01 for EI and PI, δ = 0.1 and ξ = 0.2

for GP-UCB [Lizotte, 2008, Srinivas et al., 2010]. The plots for EI, PI and

GP-UCB shown all use these parameters. For the GP-Hedge trials, we tested

performance under using both 3 acquisition functions and 9 acquisition func-

tions. For the 3-function variant we use the standard acquisition functions

with default hyperparameters. The 9-function variant uses these same three

as well as 6 additional acquisition functions consisting of: both PI and EI

with ξ = 0.1 and ξ = 1.0, GP-UCB with ξ = 0.1 and ξ = 1.0. While we omit

trials of these additional acquisition functions for space reasons, these val-

ues are not expected to perform as well as the defaults and our experiments

confirmed this hypothesis. However, we are curious to see if adding known

suboptimal acquisition functions will help or hinder GP-Hedge in practice.

Results for the gap measure Gn are shown in Figure 6.2. While the im-

provement GP-Hedge offers over the best single acquisition function varies,

there is almost no combination of function and time step in which the 9-

function GP-Hedge variant is not the best-performing method. The results

suggest that the extra acquisition functions assist GP-Hedge in exploring

the space in the early stages of the optimization process. Figure 6.2 also

displays, for a single example run, how the the arm probabilities pni used

by GP-Hedge evolve over time. We have observed that the distribution

becomes more stable when the acquisition functions come to a general con-

sensus about the best region to sample. As the optimization progresses,

exploitation becomes more rewarding than exploration, resulting in more

probability being assigned to methods that tend to exploit. However, note

156

N
N

Figure 6.2: Comparison of the three base acquisition functions with
GP-Hedge on three commonly used literature functions. The
top plots show the mean and variance of the gap metric averaged
over 25 trials. We note that the top two performing algorithms
use a portfolio strategy. With M = 3 acquisition functions, GP-
Hedge beats the best-performing acquisition function in almost
all cases. With M = 9, we add additional instances of the three
acquisition functions, but with different parameters. Despite
the fact that these additional functions individually perform
worse than the ones with default parameters, adding them to
GP-Hedge improves performance in the long run. The bottom
plots show an example evolution of GP-Hedge’s portfolio with
M = 9 for each objective function. The height of each band
corresponds to the probability pni at each iteration.

that if the initial portfolio had consisted only of these more exploitative ac-

quisition functions, the likelihood of becoming trapped at suboptimal points

would have been higher.

In Figure 6.3 we compare against the other Hedging strategies introduced

in Section 6.2 under both the gap measure and mean average regret. We

also introduce a baseline strategy which utilizes a portfolio uniformly dis-

tributed over the same acquisition functions. The results show that mixing

across multiple acquisition functions provides significant performance ben-

157

efits under the gap measure, and as the problems’ difficulty/dimensionality

increases we see that GP-Hedge outperforms other mixed strategies. The

uniform strategy performs well on the easier test functions, as the individ-

ual acquisition functions are reasonable. However, for the hardest problem

(Hartman 6) we see that the performance of the naive uniform strategy de-

grades. NormalHedge performs particularly poorly on this problem. We

observed that this algorithm very quickly collapses to an exclusively ex-

ploitative portfolio which becomes very conservative in its departures from

the incumbent. We again note that this strategy is intended for large values

of M , which may explain this behavior.

In the case of the regret measure we see that the hedging strategies per-

form comparable to GP-UCB, a method that we know to have good regret

bounds for this setting. We note, however, that although the average cu-

mulative regret can prove quite useful in assessing the convergence behavior

of Bayesian optimization methods, the bounds provided by this regret can

be loose in practice. Further, in the setting of Bayesian optimization we

are typically concerned not with the cumulative regret during optimization,

but instead with the regret incurred by the incumbent after optimization is

complete. This directly relates to the question of simple regret detailed in

the previous chapter, and as a result good regret bounds for the cumula-

tive regret do not necessarily imply good performance with respect to the

optimization problem.

Finally, based on the performance in these experiments, we will use

Hedge as the underlying algorithm for GP-Hedge in the remainder of the

experiments.

6.3.2 Sampled test functions

As there is no generally-agreed-upon set of test functions for Bayesian opti-

mization in higher dimensions, we seek to sample synthetic functions from

a known GP prior, similar to the strategy of [Lizotte, 2008]. A GP prior

is infinite-dimensional, so on a practical level for performing experiments

we simulate this by sampling points and using the posterior mean as the

158

N

N
N

N

Figure 6.3: Comparison of different hedging strategies on three com-
monly used literature functions. The top plots show the mean
and variance of the gap metric averaged over 25 trials. Note
that both Hedge and Exp3 outperform the best single acquisi-
tion function, GP-UCB. The bottom plots show the mean aver-
age regret for each method (lower is better). Average regret is
shown in order to compare with previous work of [Srinivas et al.,
2010], however as noted in the text the gap measure provides
a more direct comparison of optimization performance. We see
that mixed strategies (i.e. GP-Hedge) perform comparably to
GP-UCB under the regret measure and outperform this indi-
vidual strategy under the gap measure. As the problems get
harder, and with higher dimensionality, GP-Hedge significantly
outperforms other acquisition strategies.

synthetic objective test function.

For each trial, we use an ARD kernel with θ drawn uniformly from [0, 2]d.

We then sample 100d, d-dimensional points, compute the kernel matrix K

and then draw y ∼ N (0,K). The posterior mean of the resulting predictive

posterior distribution µ(x) introduced in Section 6.1.1 is used as the test

function. However it is possible that for particular values of θ and K, large

parts of the space will be so far from the samples that they will form plateaus

along the prior mean. To reduce this, we evaluate the test function at 500

159

N
N

Figure 6.4: Comparison of the performance of the acquisition ap-
proaches on synthetic functions sampled from a GP prior with
randomly initialized hyperparameters. Shown are the mean and
variance of the gap metric over 25 sampled functions. Here, the
variance is a relative measure of how well the various algorithms
perform while the functions themselves are varied. While the
variance is high (which is to be expected over diverse functions),
we can see that GP-Hedge is at least comparable to the best
acquisition functions and ultimately superior for both M = 3
and M = 9. We also note that for the 10- and 20-dimensional
experiments GP-UCB performs quite well but suffers in the 40-
dimensional experiment. This helps to confirm our hypothesis
that a mixed strategy is particularly useful in situations where
we do not possess strong prior information with regards to the
choice of acquisition function.

random locations. If more than 25 of these are 0, we recompute K using

200d points. This process is repeated, adding 100d points each time until

the test function passes the plateau test (this is rarely necessary in practice).

Using the response surface µ(x) as the objective function, we can then ap-

proximate the maximum using conventional global optimization techniques

to get f(x∗), which permits us to use the gap metric for performance. Note

that these sample points are only used to construct the objective, and are

not known to the optimization methods.

As can be seen in Figure 6.4, GP-Hedge with M = 9 is again the best-

performing method, which becomes even more clear as the dimensionality

increases. Interestingly, the worst-performing function changes as dimen-

sionality increases. In the 40-dimensional experiments, GP-UCB, which

160

generally performed well in other experiments, does quite poorly. Exam-

ining the behavior, it appears that by trying to minimize regret instead of

maximizing improvement, GP-UCB favors regions of high variance. How-

ever, since a 40-dimensional space remains extremely sparsely populated

even with hundreds of samples, the vast majority of the space still has high

variance, and thus high acquisition value.

6.3.3 Control of a particle simulation

We also applied these methods to optimize the behavior of a simulated phys-

ical system in which the trajectories of falling particles are controlled via a

set of repelling forces as introduced in Section 3.6.2. This is a difficult, non-

linear control task whose resulting objective function exhibits fairly isolated

regions of high value surrounded by severe plateaus. We can briefly recap

this problem as follows: the four-dimensional state-space in this problem

consists of a particle’s 2-dimensional position and velocity (p, ṗ) with two-

dimensional actions consisting of forces which act on the particle. Particles

are also affected by gravity and a frictional force resisting movement. The

goal is to direct the path of the particle through regions of the state space

with high reward r(p) so as to maximize the total reward accumulated over

many time-steps. In our experiments we use a finite, but large, time-horizon

H. In order to control this system we employ a a set of “repellers”, each of

which is located at some position ci = (ai, bi) and has strength wi. The force

on a particle at position p is a weighted sum of the individual forces from

all repellers, each of which is inversely proportional to the distance p− ci.
This problem can be formulated in the setting of Bayesian optimization

by defining the vector of repeller parameters x = (w1, a1, b1, . . .). In the

experiments shown in Figure 6.5 we will utilize three repellers, resulting in

a 9-dimensional optimization task. We can then define our objective as the

total H-step expected reward f(x) = E
[∑H

t=1 r(pn)|x
]
. Finally, since the

model defines a probability distribution Pr(p1:H |x) over particle trajectories

we can obtain a noisy estimate of this objective function by sampling a single

trajectory and evaluating the sum over its immediate rewards.

161

Results for this optimization task are shown in Figure 6.5. As with the

previous synthetic examples GP-Hedge outperforms each of its constituent

methods. We further note the particularly poor performance of PI on this

example, which in part we hypothesize is a result of plateaus in the resulting

objective function. In particular PI has trouble exploring after it has “locked

on” to a particular mode, a fact that seems exacerbated when there are

large regions with very little change in objective. The figure also shows that

gradient based methods, even when using smart tricks such as PEGASUS

[Ng and Jordan, 2000], perform badly in comparison as the reward is severely

multi-modal with large plateaus in between. Also note that we do not

directly compare against the earlier reversible jump procedure of Chapter 3.

Both the methods of this chapter and the methods of that chapter provide

a method for performing gradient-free optimization, however we can see

by comparing the time-scales that for time horizons of H = 100 that the

time-scale necessary for convergence of these methods is orders of magnitude

faster. This is a result of the MCMC methods of Chapter 3 requiring more

samples and occasional proposal rejections in order to maintain detailed

balance—something that may prove less important, and does so here, in the

optimization setting.

6.4 Convergence behavior

Properly assessing the convergence behavior of hedging algorithms of this

type is very problematic. The main difficulty lies with the fact that deci-

sions made at iteration t affect the state of the problem and the resulting

rewards at all future iterations. As a result we cannot relate the regret of our

algorithm directly to the regret of the best underlying acquisition strategy:

had we actually used the best underlying strategy we would have selected

completely different points [Cesa-Bianchi and Lugosi, 2006, section 7.11].

Regret bounds for the underlying GP-UCB algorithm have been shown

by [Srinivas et al., 2010]. Due to [Auer et al., 1998] we also have regret

bounds for the hedging strategies used to select between acquisition func-

tions (improved bounds can also be found in [Cesa-Bianchi and Lugosi,

162

N

N

Figure 6.5: Results of experiments on the repeller control problem.
The plot shows the progress of each of the described Bayesian
optimization methods averaged over 25 runs. For comparison,
it also shows the progress of a gradient method with PEGASUS.

2006]). However, because of the points stated in the previous paragraph,

and expounded in more detail in the appendix, we cannot simply combine

both regret bounds. See also the bounds for a related but distinct bandit

problem of [Grunewalder et al., 2010].

With these caveats in mind we will consider a slightly different algorith-

mic framework. In particular we will consider rewards at iteration t given

by the mean r
(i)
n = µn−1(x

(i)
n), where we note that while this procedure

still evaluates the GP mean, rewards are calculated before refitting. This

assumption is made merely to simplify the following proof. We will also as-

sume that GP-UCB is included as one of the possible acquisition functions

due to its associated convergence results (see Section 6.1.2). In this scenario

163

we can obtain the following bound on our cumulative regret.

Theorem 1. Assume GP-Hedge is used with a collection of acquisition

strategies, one of which is GP-UCB with parameters βn. If we also have

a bound γn on the information gained at points selected by the algorithm

after n iterations, then with probability at least 1− δ, for any finite horizon

N the cumulative regret is bounded by

LN ≤
√
NC1βNγN +

[N∑
n=1

βnσn−1(xUCB
n)

]
+O(

√
N),

where xUCB
n is the nth point proposed by GP-UCB.

While we will give a full proof of this theorem in Section 6.4.1 we should

note that this statement does not, on its own, guarantee the convergence

of the algorithm, i.e. that limN→∞ LN/N = 0. We can see, however, that

our regret is bounded by two sub-linear terms and an additional term which

depends on the information gained at points proposed, but not necessarily

selected. In some sense this additional term depends on the proximity of

points proposed by GP-UCB to points previously selected, the expected

distance of which should decrease as the number of iterations increases.

We should point out, also, that the regret incurred by the hedging pro-

cedure is with respect to the best underlying strategy, which need not neces-

sarily be GP-UCB. We then relate this strategy regret to the regret incurred

by GP-UCB on the actual points proposed due to the known regret bounds

for GP-UCB. An interesting extension to these ideas would be to incorpo-

rate bounds on the other underlying strategies, such as recent bounds for

EI [Bull, 2011].

6.4.1 Proof of Theorem 1

We will consider a portfolio-based strategy using rewards r
(i)
n = µn−1(x

(i)
n)

and selecting between acquisition functions using the Hedge algorithm. In

order to discuss this we will need to write the gain over N steps, in hindsight,

164

that would have been obtained had we instead used strategy i,

g
(i)
N =

N∑
n=1

r(i)
n =

N∑
n=1

µn−1(x(i)
n).

We must emphasize however that this gain is conditioned on the actual

decisions made by Hedge, namely that points {x1, . . . , xn−1} were selected

by Hedge. If we define the maximum strategy gmax
N = maxi g

(i)
N we can then

bound the regret of Hedge with respect to this gain.

Lemma 1. With probability at least 1−δ1 and for a suitable choice of Hedge

parameters, η =
√

8 lnM/N , the regret is bounded by

gmax
N − gHedge

N ≤ O(
√
T).

This result is given without proof as it follows directly from [Cesa-Bianchi

and Lugosi, 2006, Section 4.2] for rewards in the range [0, 1]. At the cost

of slightly worsening the bound in terms of its multiplicative/additive con-

stants, the following generalizations can also be noted:

• For rewards instead in the arbitrary range2 [a, b] the same bound can

be shown by referring to [Cesa-Bianchi and Lugosi, 2006, Section 2.6].

• The choice of η in Lemma 1 requires knowledge of the time horizon N .

By referring to [Cesa-Bianchi and Lugosi, 2006, Section 2.3] we can

remove this restriction using a time-varying term ηn =
√

8 lnM/n.

• By referring to [Cesa-Bianchi and Lugosi, 2006, Section 6.8] we can

also extend this bound to the partial-information strategy Exp3.

Finally, we should also note that this regret bound trivially holds for any

strategy i, since gmax
N is the maximum. It is also important to note that

this lemma holds for any choice of r
(i)
t , with rewards depending on the actual

actions taken by Hedge. The particular choice of rewards we use for this

proof have been selected in order to achieve the following derivations.

For the next two lemmas we will refer the reader to [Srinivas et al., 2010,

2 To obtain rewards bounded within some range [a, b] we can assume that the additive
noise εt is truncated above some large absolute value, which guarantees bounded means.

165

Lemma 5.1 and 5.3] for proof. The first provides a bound on deviations of

the GP mean from the true function value, while the second allows us to

rewrite the information gain for points selected in terms of the predictive

variances. We point out, however, that these two lemmas only depend on

the underlying Gaussian process and as a result can be used separately from

the GP-UCB framework.

Lemma 2. Assume δ2 ∈ (0, 1), a finite sample space |A| < ∞, and βt =

2 log(|A|πt/δ2) where
∑

t π
−1
t = 1 and πt > 0. Then with probability at least

1− δ2 the absolute deviation of the mean is bounded by

|f(x)− µt−1(x)| ≤
√
βtσt−1(x) ∀x ∈ A,∀t ≥ 1.

In order to simplify this discussion we have assumed that the sample space A
is finite, however this can also be extended to compact spaces as in [Srinivas

et al., 2010, Lemma 5.7].

Lemma 3. The information gain for points selected by the algorithm can

be written as

I(y1:T ; f1:T) =
1

2

T∑
t=1

log(1 + σ−2σ2
t−1(xt)).

Next, the following lemma follows the proof of [Srinivas et al., 2010,

Lemma 5.4], however again it can be applied outside the GP-UCB frame-

work. Due to the slightly different conditions we recreate this proof here.

Lemma 4. Given points xn selected by the algorithm and for C1 = 2/ log(1+

σ−2), the following bound holds for the sum of variances:

N∑
n=1

βnσ
2
n(xn) ≤ C1βNγN .

166

Proof. Because βn is nondecreasing we can write the following inequality

βnσ
2
n−1(xn) ≤ βNσ2(σ−2σ2

n−1(xn))

≤ βNσ2 σ−2

log(1 + σ−2)
log(1 + σ−2σ2

n−1(xn)).

The second inequality holds because the posterior variance is bounded by

the prior variance, σ2
n−1(x) ≤ k(x, x) ≤ 1, which allows us to write

σ−2σ2
n−1(xn) ≤ σ−2 log(1 + σ−2σ2

n−1(xn))

log(1 + σ−2)
.

By summing over both sides of the original bound and applying the result

of Lemma 3 we can see that

N∑
n=1

βnσ
2
n−1(xn) ≤ βN

1

2
C1

N∑
n=1

log(1 + σ−2σ2
n−1(xn))

= βNC1I(y1:N ; f1:N).

The result follows by bounding the information gain by I(y1:N ; f1:N) ≤ γN ,

which can be done for many common kernels, including the squared expo-

nential [see Srinivas et al., 2010, Theorem 5].

Finally, the following lemma follows directly from [Srinivas et al., 2010,

Lemma 5.2]. We will note that this lemma depends only on the definition

of the GP-UCB acquisition function, and as a result does not require that

points at any previous iteration were actually selected via GP-UCB.

Lemma 5. If the bound from Lemma 2 holds, then for a point xUCB
n proposed

by GP-UCB with parameters βn the following bound holds:

f(x∗)− µn−1(xUCB
n) ≤

√
βnσn−1(xUCB

n).

We can now combine these results to construct the proof of Theorem 1.

Proof of Theorem 1. With probability at least 1− δ1 the result of Lemma 1

holds. If we assume that GP-UCB is included as one of the acquisition

167

functions we can write

−gHedge
N ≤ O(

√
N)− gUCB

N

and by adding
∑N

n=1 f(x∗) to both sides this inequality can be rewritten as

N∑
n=1

f(x∗)− µn−1(xn) ≤ O(
√
N) +

N∑
n=1

f(x∗)− µn−1(xUCB
n).

With probability at least 1 − δ2 the bound from Lemma 2 can be applied

to the left-hand-side and the result of Lemma 5 can be applied to the right.

This allows us to rewrite this inequality as

N∑
n=1

f(x∗)− f(xn)−
√
βnσn−1(xn) ≤ O(

√
N) +

N∑
n=1

√
βnσn−1(xUCB

n)

which means that the regret is bounded by

LN =

N∑
n=1

f(x∗)− f(xn)

≤ O(
√
N) +

N∑
n=1

√
βnσn−1(xUCB

n) +

N∑
n=1

√
βnσn−1(xn)

≤ O(
√
N) +

N∑
n=1

√
βnσn−1(xUCB

n) +
√
C1NβNγN .

This final inequality follows directly from Lemma 4 by application of the

Cauchy-Schwarz inequality. We should note that we cannot use Lemma 4

to further simplify the terms involving the sum over σn−1(xUCB
n). This is

because the lemma only holds for points that are sampled by the algorithm,

which may not include those proposed by GP-UCB.

Finally, this result depends upon Lemmas 1 and 5 holding. By a simple

union bound argument we can see that these both hold with probability at

least 1− δ1 − δ2, and by setting δ1 = δ2 = δ/2 we recover our result.

168

6.5 Chapter summary and conclusions

Hedging strategies are a powerful tool in the design of acquisition functions

for Bayesian optimization. In this paper we have shown that strategies that

adaptively modify a portfolio of acquisition functions often perform substan-

tially better—and almost never worse—than the best-performing individual

acquisition function. This behavior was observed consistently across a broad

set of experiments including high-dimensional GPs, standard test problems

recommended in the bounded global optimization literature, and a hard con-

tinuous, 9D, nonlinear Markov decision process. These improvements will

allow for advances in many practical domains of interest where we have al-

ready demonstrated the benefits of simple Bayesian optimization techniques

[Brochu et al., 2010a,b, Martinez-Cantin et al., 2007], including robotics, on-

line planning, hierarchical reinforcement learning, experimental design and

interactive user interfaces.

Our experiments have also shown that full-information strategies are able

to outperform partial-information strategies in many situations. However,

partial-information strategies can be beneficial in instances of high N or in

situations where the acquisition functions provide very conflicting advice.

Evaluating these tradeoffs is an interesting area of future research.

In this work we give a regret bound for our hedging strategy by relating

its performance to existing bounds for GP-UCB. Although our bound does

not guarantee convergence it does provide some intuition as to the success

of hedging methods in practice. Another interesting line of future research

involves finding similar bounds for the gap measure.

169

Chapter 7

Conclusion

This work primarily focuses on probabilistic approaches to planning and

reinforcement learning problems. In Chapter 2 we discussed an alternative

probabilistic model whose maximum likelihood parameters correspond to

the optimal parameters of an associated MDP. We then used this technique

to propose a novel mixture-of-Gaussians MDP solution, as well as extended

the probabilistic MDP formulation to semi-Markov decision processes. In

Chapter 3 we extended this formalism to the Bayesian setting, allowing for

the computation of a “posterior” over policy parameters. This also allowed

for a novel gradient-free approach to the solution of direct policy search.

In Chapter 4 we introduced a number of regularization schemes for LSTD,

aimed at enforcing sparsity in the underlying value function approximation.

Finally, in Chapters 5–6 we discussed Bayesian approaches to optimization,

including bandit algorithms and Bayesian optimization. In this last chapter

we continued to introduce a meta-optimization algorithm on top of various

acquisition strategies which chooses between these lower level optimizers.

The results of these chapters significantly enhances the literature in the

following ways:

• With the mixture-of-Gaussians model and its accompanying solution

method we provided a proper, continuous extension to the planning-as-

inference framework that is also analytically tractable. This extension

also provides a solution method which generalized linear-quadratic

170

control to more general reward models.

• We were the first to extend this framework to the continuous-time,

semi-Markov setting.

• We were the first to use MCMC (reversible-jump or otherwise) as a

solution method for direct policy search.

• We provide a novel reformulation of the planning-as-inference frame-

work in terms of the entire sum of rewards over a trajectory. This

enhances the mixing properties of the Markov chain, but it also has

applications to Monte Carlo EM; see also [Vlassis and Toussaint, 2009]

where a similar approach was developed in parallel.

• We provide a novel decomposition of the state-space via auxiliary noise

variables which greatly enhances the mixing properties of the Markov

chain.

• We provide a novel regularization scheme for the problem of LSTD

based on a mixture of `2 and `1 penalties, and show how it encourages

sparse solutions, as well as allowing for solution methods that are much

more in line with the approaches of standard supervised learning.

• We describe a novel meta-algorithm for performing Bayesian optimiza-

tion by mixing over a set of acquisition functions; we also show that

this method out-performs any single choice of acquisition function.

• Finally, we prove a bound on the performance of this strategy which

relates its performance to the performance of the portfolio of under-

lying strategies.

This work also points towards a number of interesting avenues of fu-

ture research. In Section 2.3 we presented an EM algorithm for solving a

linear-Gaussian system with mixture-of-Gaussians rewards. This provides

an analytic method for solving linear systems with rewards that are more

general than standard quadratic cost functions. However, we can consider

generalizing this further. For example, take the exponential family of dis-

171

tributions [see Wainwright and Jordan, 2008]

p(x|η) = h(x) exp{ηTT (x)−A(η)}

for parameter vector η referred to as the natural parameter and functions h,

T , and A. This family is quite general, encompassing Gaussian, binomial,

multinomial, gamma, beta, and many other such distributions. As a result

we can consider using transition models and rewards whose functional forms

are given as conditional exponential family distributions. We can see that

the Gaussian model of Section 2.3 is already a particular implementation

of this more general idea of “exponential family MDPs”. Further, if we

consider sufficient statistics T (x) which are linear, we should be able to

employ efficient updates as alluded to earlier, and in [Furmston and Barber,

2011]. This would enable a unified approach with wide applicability to many

different models.

Based on the earlier probabilistic interpretation of MDPs we further

extended this methodology in Section 2.5 to semi-Markov decision problems.

This allows us to tackle problems where time is continuous and variable for

each state and action, but distributed according to some known distribution.

This is an interesting problem in its own right, but it also allows one to

consider hierarchical planning and reinforcement learning problems in the

probabilistic paradigm. For example, we can consider a standard MDP with

discrete-time actions, each of which takes a single unit of time to complete.

But we can now consider options consisting of actions which correspond

to sub-policies leading to a (possible random-length) sequence of individual

actions; see [Ghavamzadeh and Mahadevan, 2007, Sutton et al., 1998]. If

the sub-policies are known, this transforms the MDP into a SMDP as noted

by Sutton et al.. The approach of Section 2.5 can be directly applied to this

problem. However, we can also consider learning these sub-policies, which

is not a problem we tackle in this work but is definitely of future interest.

In Chapter 3 we introduced an MCMC algorithm for sampling the pa-

rameters of an MDP proportional to the expected reward of trajectories

sampled under those parameters. This is an interesting extension to the

172

purely maximum-likelihood approach of the previous chapter. This ap-

proach also provides a gradient-free method for optimization. However, in

order to solve this problem using MCMC we must accept a certain number

of rejection steps that are necessary to maintain detailed balance. Although

this method gives us a full “posterior” distribution, this approach may not

be necessary if one is only interested in optimization. However, consider the

problem of model-based control wherein one estimates a model of the system

from data, and then performs policy optimization given this model. This

model itself is often subject to uncertainty due to the process by which it

was learned. In this case we can envision a probabilistic model which takes

into account both the uncertainty in the model and the “uncertainty” in the

policy—i.e. the relative performance of the policy. We can then consider

a mechanism which uses this policy “uncertainty” to direct further explo-

ration of the model, ignoring areas which are unlikely to lead to significant

increases in the expected reward.

Finally, in Chapter 5 we discussed a number of bandit methods for the

tasks of both cumulative and simple regret optimization. In the first part

of this chapter we discussed both Bayesian and frequentist approaches to

the problem of minimizing frequentist regret, and we noted perhaps sur-

prisingly that Bayesian approaches seemed to work quite well here, even

though regret is a frequentist objective. This, of course, has been previously

noted by [Kaufmann et al., 2012a]. We then introduced simple regret and

a number of methods which minimize this objective, including a version of

UCB, UCB-E, which is much more exploratory. However, we also saw that

in many situations the cumulative strategies of the earlier sections also per-

formed surprisingly well even under this different objective. Based on this

observation, we hypothesize that a “Bayesian” version of UCB-E would per-

form quite well. This also has ramifications for the Bayesian optimization

approaches of Chapter 6 which are inherently concerned with problems of

minimizing simple regret.

173

Bibliography

A. Antos, C. Szepesvári, and R. Munos. Learning near-optimal policies
with Bellman-residual minimization based fitted policy iteration and a
single sample path. Machine Learning, 71(1), 2008. → pages 90, 93, 94

H. Attias. Planning by probabilistic inference. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, 2003.
→ pages 20

J. Audibert and S. Bubeck. Best arm identification in multi-armed bandits.
In Proceedings of the Conference on Learning Theory, 2010. → pages 131

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. Gambling in a
rigged casino: the adversarial multi-armed bandit problem. Technical
Report NC2-TR-1998-025, NeuroCOLT2 Technical Report Series, 1998.
→ pages 141, 152, 162

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2), 2002. → pages
122, 149

L. Baird. Residual algorithms: Reinforcement learning with function
approximation. In Proceedings of the International Conference on
Machine Learning, 1995. → pages 13

D. Ballard and M. Hayhoe. Modelling the role of task in the control of
gaze. Visual Cognition, 17(6-7), 2009. → pages 2

J. Baxter and P. Bartlett. Infinite-horizon policy-gradient estimation.
Journal of Artificial Intelligence Research, 15, 2001. → pages 15, 53

L. Bazzani, N. de Freitas, H. Larochelle, V. Murino, and J. Ting. Learning
attentional policies for tracking and recognition in video with deep

174

networks. In Proceedings of the International Conference on Machine
Learning, 2011. → pages 2

R. Bellman. A problem in the sequential design of experiments. Sankhyā:
The Indian Journal of Statistics, 16(3/4), 1956. → pages 115

R. Bellman. Dynamic Programming. Princeton University Press, 1957. →
pages 2, 8

D. Bertsekas. Dynamic Programming and Optimal Control. Athena
Scientific, 1995. → pages 11

C. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag,
2006. → pages 50

S. Bradtke and A. Barto. Linear least-squares algorithms for temporal
difference learning. Machine Learning, 22:33–57, 1996. → pages 4, 13, 89

E. Brochu. Interactive Bayesian optimization: learning user preferences
for graphics and animation. PhD thesis, University of British Columbia,
2010. → pages 141, 155

E. Brochu, N. de Freitas, and A. Ghosh. Active preference learning with
discrete choice data. In Advances in Neural Information Processing
Systems, 2007. → pages 3, 141

E. Brochu, T. Brochu, and N. de Freitas. A Bayesian interactive
optimization approach to procedural animation design. In
Eurographics/ACM SIGGRAPH Symposium on Computer Animation,
2010a. → pages 3, 141, 144, 145, 169

E. Brochu, V. Cora, and N. de Freitas. A tutorial on Bayesian
optimization of expensive cost functions with application to active user
modeling and hierarchical reinforcement learning. eprint
arXiv:1012.2599, arXiv, 2010b. → pages 141, 143, 155, 169

S. Brooks, A. Gelman, G. Jones, and X. Meng, editors. Handbook of
Markov Chain Monte Carlo: Methods and Applications. Chapman &
Hall, 2010. → pages 177, 178

S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed
bandits problems. In Proceedings of the Conference on Algorithmic
Learning Theory, 2009. → pages 129, 130, 131

175

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari. §-armed bandits.
Journal of Machine Learning Research, 2011. → pages 149

A. Bull. Convergence rates of efficient global optimization algorithms.
eprint arXiv:1101.3501v2, arXiv, 2011. → pages 164

F. Bunea, A. Tsybakov, and M. Wegkamp. Sparsity oracle inequalities for
the lasso. Electronic Journal of Statistics, 1, 2007. → pages 100

L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst. Reinforcement
learning and dynamic programming using function approximators,
volume 39. CRC Press, 2010. → pages 11

A. Cassandra, L. Kaelbling, and M. Littman. Acting optimally in partially
observable stochastic domains. In Proceedings of the National
Conference on Artificial Intelligence, 1995. → pages 114

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games.
Cambridge University Press, New York, 2006. → pages 162, 165

K. Chaudhuri, Y. Freund, and D. Hsu. A parameter-free hedging
algorithm. In Advances in Neural Information Processing Systems, 2009.
→ pages 152

K. Chaudhuri, Y. Freund, and D. Hsu. Tracking using an explanatory
framework. Technical Report arXiv:0903.2862v2, arXiv, January 2010.
→ pages 141

Y. Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 17(8), 1995. → pages 81

W. Chu and Z. Ghahramani. Gaussian processes for ordinal regression.
Journal of Machine Learning Research, 6, 2005. → pages 143

D. Cox and S. John. SDO: A statistical method for global optimization. In
M. Alexandrov and M. Hussaini, editors, Multidisciplinary Design
Optimization: State of the Art, pages 315–329. SIAM, 1997. → pages 149

M. Crowley and D. Poole. Policy gradient planning for environmental
decision making with existing simulators. In AAAI11: Proceedings of the
Twenty-Fifth Conference on Artificial Intelligence, Special Track on
Computational Sustainability and AI, 2011. → pages 2

P. Dayan and G. Hinton. Using EM for reinforcement learning. Neural
Computation, 9, 1997. → pages 19

176

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society, Series B, 39(1), 1977. → pages 26

M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas. Learning where to
attend with deep architectures for image tracking. Neural Computation,
24(8), 2012. → pages 2

P. Diggle, A. Tawn, and A. Moyeed. Model-based geostatistics. Journal of
the Royal Statistical Society, Series C, 47(3), 1998. → pages 143

L. Dixon and G. Szegö. The global optimization problem: an introduction.
Towards Global Optimization, 2, 1978. → pages 155

A. Doucet, S. Godsill, and C. Robert. Marginal maximum a posteriori
estimation using Markov chain Monte Carlo. Statistics and Computing,
12(1), 2002. → pages 79

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle
regression. Annals of statistics, 32(2), 2004. → pages 103, 106

Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman: The Gaussian
process approach to temporal difference learning. In Proceedings of the
International Conference on Machine Learning, 2003. → pages 13

Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with gaussian
processes. In Proceedings of the International Conference on Machine
Learning. ACM, 2005. → pages 13

A. Farahmand, M. Ghavamzadeh, C. Szepesvari, and S. Mannor.
Regularized policy iteration. Advances in Neural Information Processing
Systems, 21, 2009. → pages 90, 91, 96, 102

P. Fearnhead. State-space models. In Brooks et al. [2010]. → pages 68

Y. Freund and R. Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In Computational learning
theory, 1995. → pages 152

J. Friedman, T. Hastie, and R. Tibshirani. The elements of statistical
learning. Springer, 2001. → pages 90, 98

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate
optimization. The Annals of Applied Statistics, 1(2):302–332, 2007. →
pages 101, 104, 106

177

E. Frostig and G. Weiss. Four proofs of gittins multiarmed bandit
theorem. Applied Probability Trust, 70, 1999. → pages 118

T. Furmston and D. Barber. Variational methods for reinforcement
learning. In Proceedings of the International Conference on Artificial
Intelligence and Statistics, 2010. → pages 56

T. Furmston and D. Barber. Efficient inference in markov control
problems. In Proceedings of the International Conference on Uncertainty
in Artificial Intelligence, 2011. → pages 32, 56, 172

M. Geist and B. Scherrer. `1-penalized projected bellman residual.
European Workshop on Reinforcement Learning, 2011. → pages 107

C. Geyer. Introduction to Markov Chain Monte Carlo. In Brooks et al.
[2010]. → pages 60, 65

M. Ghavamzadeh and S. Mahadevan. Hierarchical average reward
reinforcement learning. Journal of Machine Learning Research, 8, 2007.
→ pages 55, 172

M. Ghavamzadeh, A. Lazaric, R. Munos, and M. Hoffman. Finite-sample
analysis of Lasso-TD. In Proceedings of the International Conference on
Machine Learning, 2011. → pages iv, 17, 90, 101, 107

J. Gittins. Bandit processes and dynamic allocation indices. Journal of the
Royal Statistical Society, Series B, 41(2), 1979. → pages 16, 110, 116,
119, 138

J. Gittins and D. Jones. A dynamic allocation index for the discounted
multiarmed bandit problem. Biometrika, 66(3), 1979. → pages 115

J. Gittins, K. Glazebrook, and R. Weber. Multi-armed bandit allocation
indices. Wiley, 2011. → pages 115, 116

P. Green. Reversible jump Markov Chain Monte Carlo computation and
Bayesian model determination. Biometrika, 82(4), 1995. → pages 60, 61,
65, 66

P. Green. Trans-dimensional Markov Chain Monte Carlo. In P. Green,
N. Hjort, and S. Richardson, editors, Highly Structured Stochastic
Systems. Oxford University Press, 2003. → pages 59, 65

178

E. Greensmith, P. Bartlett, and J. Baxter. Variance reduction techniques
for gradient estimates in reinforcement learning. In Advances in Neural
Information Processing Systems, 2001. → pages 15

S. Grunewalder, J. Audibert, M. Opper, and J. Shawe-Taylor. Regret
bounds for Gaussian process bandit problems. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, 2010.
→ pages 163

L. Hannah and D. Dunson. Approximate dynamic programming for
storage problems. In Proceedings of the International Conference on
Machine Learning, 2011. → pages 2

N. Hay, S. Russell, D. Tolpin, and S. Shimony. Selecting computations:
Theory and applications. In Proceedings of the International Conference
on Uncertainty in Artificial Intelligence, 2012. → pages 133, 134

M. Hoffman and N. de Freitas. Inference strategies for solving
semi-Markov decision processes. In L. Sucar, E. Morales, and H. Hoey,
editors, Decision Theory Models for Applications in Artificial
Intelligence: Concepts and Solutions. IGI Global, 2011. → pages iv, 17

M. Hoffman, A. Doucet, N. de Freitas, and A. Jasra. Bayesian policy
learning with trans-dimensional MCMC. In Advances in Neural
Information Processing Systems, 2007a. → pages iv, 17

M. Hoffman, A. Doucet, N. de Freitas, and A. Jasra. On solving general
state-space sequential decision problems using inference algorithms.
Technical Report TR-2007-04, University of British Columbia, 2007b. →
pages iv

M. Hoffman, P. Carbonetto, N. de Freitas, and A. Doucet. Inference
strategies for solving semi-Markov decision processes. NIPS Workshop on
Probabilistic Approaches for Robotics and Control, 2009a. → pages iv

M. Hoffman, N. de Freitas, A. Doucet, and J. Peters. An expectation
maximization algorithm for continuous Markov decision processes with
arbitrary reward. In Proceedings of the International Conference on
Artificial Intelligence and Statistics, 2009b. → pages iv, 17

M. Hoffman, H. Kück, N. de Freitas, and A. Doucet. New inference
strategies for solving Markov decision processes using reversible jump
MCMC. In Proceedings of the International Conference on Uncertainty
in Artificial Intelligence, 2009c. → pages iv, 17

179

M. Hoffman, E. Brochu, and N. de Freitas. Portfolio strategies for
Bayesian optimization. In Proceedings of the International Conference
on Uncertainty in Artificial Intelligence, 2011a. → pages 18

M. Hoffman, A. Lazaric, M. Ghavamzadeh, and R. Munos. Regularized
least squares temporal difference learning with nested `2 and `1
penalization. In European Workshop on Reinforcement Learning, 2011b.
→ pages iv, 17

D. Huang, T. Allen, W. Notz, and N. Zheng. Global optimization of
stochastic black-box systems via sequential Kriging meta-models.
Journal of Global Optimization, 3(34):441–466, March 2006. → pages
155

F. Hutter. Automating the Configuration of Algorithms for Solving Hard
Computational Problems. PhD thesis, University of British Columbia,
Vancouver, Canada, August 2009. → pages 141, 155

M. Jamshidian and R. Jennrich. Conjugate gradient acceleration of the
EM algorithm. Journal of the American Statistical Association, 88(421),
1993. → pages 30

J. Johns, C. Painter-Wakefield, and R. Parr. Linear complementarity for
regularized policy evaluation and improvement. Advances in Neural
Information Processing Systems, 23, 2010. → pages 90

D. Jones, C. Perttunen, and B. Stuckman. Lipschitzian optimization
without the Lipschitz constant. Journal of Optimization Theory and
Applications, 79:157–181, 1993. → pages 146, 155

D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of
expensive black-box functions. Journal of Global Optimization, 13:
455–492, 1998. → pages 140

D. R. Jones. A taxonomy of global optimization methods based on
response surfaces. Journal of Global Optimization, 21:345–383, 2001. →
pages 148

H. Kappen. An introduction to stochastic control theory, path integrals
and reinforcement learning. In Cooperative Behavior in Neural Systems,
2007. → pages 14, 20

180

E. Kaufmann, O. Cappé, and A. Garivier. On bayesian upper confidence
bounds for bandit problems. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, 2012a. → pages 124,
125, 127, 173

E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: an
asymptotically optimal finite-time analysis. In Proceedings of the
Conference on Algorithmic Learning Theory, 2012b. → pages 126

J. Kober and J. Peters. Policy search for motor primitives in robotics. In
Advances in Neural Information Processing Systems, 2008. → pages 20

J. Kolter and A. Ng. Regularization and feature selection in least-squares
temporal difference learning. In Proceedings of the International
Conference on Machine Learning, 2009. → pages 90, 91, 96, 101

H. Kück, M. Hoffman, A. Doucet, and N. de Freitas. Inference and
learning for active sensing, experimental design, and control. In Iberian
Conference on Pattern Recognition and Image Analysis, 2009. → pages
17

H. Kushner. A new method of locating the maximum of an arbitrary
multipeak curve in the presence of noise. Journal of Basic Engineering,
86, 1964. → pages 146, 148

M. Lagoudakis and R. Parr. Model-free least-squares policy iteration. In
Advances in Neural Information Processing Systems, 2002. → pages 13,
91, 102

T. Lai. Adaptive treatment allocation and the multi-armed bandit
problem. The Annals of Statistics, 15(3), 1987. → pages 122

T. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6, 1985. → pages 121, 122, 124, 149

K. Lange. A quasi-Newton acceleration of the EM algorithm. Statistica
Sinica, 5(1), 1995. → pages 30

F. Lewis, D. Dawson, and C. Abdallah. Robot Manipulator Control:
Theory and Practice. CRC Press, 2004. → pages 41

D. Lizotte. Practical Bayesian Optimization. PhD thesis, University of
Alberta, Edmonton, Alberta, Canada, 2008. → pages 148, 155, 156, 158

181

D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Automatic gait
optimization with Gaussian process regression. In Proceedings of the
International Joint Conference on Artificial Intelligence, 2007. → pages
141

H. Maei, C. Szepesvári, S. Bhatnagar, and R. Sutton. Toward off-policy
learning control with function approximation. In Proceedings of the
International Conference on Machine Learning, 2010. → pages 13

O. Maron and A. Moore. Hoeffding races: Accelerating model selection
search for classification and function approximation. In Advances in
Neural Information Processing Systems, 1994. → pages 132

R. Martinez-Cantin, N. de Freitas, A. Doucet, and J. A. Castellanos.
Active policy learning for robot planning and exploration under
uncertainty. Robotics: Science and Systems, 2007. → pages 1, 141, 144,
169

R. Martinez-Cantin, N. de Freitas, E. Brochu, J. Castellanos, and
A. Doucet. A Bayesian exploration-exploitation approach for optimal
online sensing and planning with a visually guided mobile robot.
Autonomous Robots, 27(2), 2009. → pages 1, 141

G. McLachlan and T. Krishnan. The EM Algorithm and Extensions.
Wiley-Interscience, 1997. → pages 26, 30

T. Mitchell and J. Beauchamp. Bayesian variable selection in linear
regression. Journal of the American Statistical Association, 83(404),
1988. → pages 59

V. Mnih, C. Szepesvári, and J. Audibert. Empirical bernstein stopping. In
Proceedings of the International Conference on Machine Learning, 2008.
→ pages 133

J. Močkus, V. Tiesis, and A. Žilinskas. The application of bayesian
methods for seeking the extremum. In L. Dixon and G. Szego, editors,
Toward Global Optimization, volume 2. Elsevier, 1978. → pages 140, 148

P. Müller. Simulation based optimal design. In Bayesian Statistics, 1998.
→ pages 79

P. Müller, B. Sansó, and M. de Iorio. Optimal Bayesian design by
inhomogeneous Markov chain simulation. Journal of the American
Statistical Association, 99, 2004. → pages 79

182

A. Ng and M. Jordan. PEGASUS: A policy search method for large MDPs
and POMDPs. In Proceedings of the International Conference on
Uncertainty in Artificial Intelligence, 2000. → pages 38, 70, 78, 84, 162

A. Ng and S. Russell. Algorithms for inverse reinforcement learning. In
Proceedings of the International Conference on Machine Learning, 2000.
→ pages 2

A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger,
and E. Liang. Autonomous inverted helicopter flight via reinforcement
learning. Experimental Robotics, 2006. → pages 1

J. Niño-Mora. Computing a classic index for finite-horizon bandits.
INFORMS Journal on Computing, 23(2), 2011. → pages 119

J. Nocedal and S. Wright. Numerical optimization. Springer Verlag, 1999.
ISBN 0387987932. → pages 146

M. Osborne. Bayesian Gaussian Processes for Sequential Prediction,
Optimization and Quadrature. PhD thesis, University of Oxford, 2010.
→ pages 141, 145

O. Papaspiliopoulos, G. Roberts, and M. Sköld. Non-centered
parameterisations for hierarchical models and data augmentation.
Bayesian Statistics, 7, 2003. → pages 77

J. Peters and S. Schaal. Reinforcement learning for operational space
control. In Proceedings of the IEEE International Conference on
Robotics and Automation, 2007. → pages 1, 20

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9),
2008. → pages 1, 15, 38

P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to
discrete Bayesian reinforcement learning. In Proceedings of the
International Conference on Machine Learning, 2006. → pages 16

G. Poyiadjis, A. Doucet, and S. Singh. Maximum likelihood parameter
estimation in general state-space models using particle methods. In
Proceedings of the American Statistical Association, 2005. → pages 32

M. Puterman. Markov Decision Processes. Wiley-Interscience, 1994. →
pages 2, 4, 8, 10, 11

183

M. Puterman and M. Shin. Modified policy iteration algorithms for
discounted markov decision problems. Management Science, 24(11),
1978. → pages 10

C. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning.
In Advances in Neural Information Processing Systems, 2004. → pages
13

C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2005. → pages 144, 145, 156

C. E. Rasmussen. Gaussian processes to speed up hybrid Monte Carlo for
expensive Bayesian integrals. Bayesian Statistics, 2003. → pages 141

K. Rawlik, M. Toussaint, and S. Vijayakumar. On stochastic optimal
control and reinforcement learning by approximate inference. Robotics:
Science and Systems, 2012. → pages 20

S. Richardson and P. Green. On Bayesian analysis of mixtures with an
unknown number of components. Journal of the Royal Statistical
Society, Series B, 59(4), 1997. → pages 60

H. Robbins. Some aspects of the sequential design of experiments. Bulletin
of the American Mathematical Society, 55, 1952. → pages 2, 15, 109

H. Robbins and S. Monro. A stochastic approximation method. The
Annals of Mathematical Statistics, 1951. → pages 12, 14

C. Robert, G. Casella, and C. Robert. Monte Carlo Statistical Methods.
Springer, 1999. → pages 60

C. Rothkopf and D. Ballard. Credit assignment in multiple goal embodied
visuomotor behavior. Frontiers in Psychology, 1, 2010. → pages 2

H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for
latent Gaussian models by using integrated nested Laplace
approximations. Journal Of The Royal Statistical Society Series B, 71
(2), 2009. → pages 143

A. Sauré. Approximate dynamic programming methods for advance patient
scheduling. PhD thesis, University of British Columbia, 2012. → pages 2

M. Schmidt. Graphical Model Structure Learning with l1-Regularization.
PhD thesis, University of British Columbia, 2010. → pages 101, 104, 106

184

R. Shachter. Probabilistic inference and influence diagrams. Operations
Research, 1988. → pages 19

E. Snelson and Z. Ghahramani. Sparse Gaussian Processes using
pseudo-inputs. In Advances in Neural Information Processing Systems,
2006. → pages 42

J. Snoek, H. Larochelle, and R. Adams. Practical bayesian optimization of
machine learning algorithms. In Advances in Neural Information
Processing Systems, 2012. → pages 3

J. Spall. Introduction to stochastic search and optimization: Estimation,
simulation, and control. Wiley-Interscience, 2005. → pages 78

N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design.
In Proceedings of the International Conference on Machine Learning,
2010. → pages 125, 141, 149, 156, 159, 162, 165, 166, 167

R. Sutton. Learning to predict by the methods of temporal differences.
Machine Learning, 3(1), 1988. → pages 12

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT
Press, 1998. → pages 4, 13

R. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial
Intelligence, 112(1), 1998. → pages 172

R. Sutton, H. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári, and
E. Wiewiora. Fast gradient-descent methods for temporal-difference
learning with linear function approximation. In Proceedings of the
International Conference on Machine Learning, 2009. → pages 13

C. Szepesvári. Algorithms for reinforcement learning. Morgan & Claypool
Publishers, 2010. → pages 13

W. Thompson. On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika, 1933. →
pages 2, 125, 126

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, Series B, 58(1), 1996. → pages 100

185

E. Todorov. General duality between optimal control and estimation. In
IEEE Conference on Decision and Control, 2008. → pages 20

M. Toussaint and A. Storkey. Probabilistic inference for solving discrete
and continuous state Markov Decision Processes. In Proceedings of the
International Conference on Machine Learning, 2006. → pages ii, 3, 19,
21, 32, 71

M. Toussaint, S. Harmeling, and A. Storkey. Probabilistic inference for
solving (PO)MDPs. Technical Report EDI-INF-RR-0934, University of
Edinburgh, School of Informatics, 2006. → pages 20, 28, 31, 53

J. Tsitsiklis and B. Van Roy. Regression methods for pricing complex
american-style options. IEEE Transactions on Neural Networks, 12(4),
2001. → pages 2

T. Ullman, C. Baker, O. Macindoe, O. Evans, N. Goodman, and
J. Tenenbaum. Help or hinder: Bayesian models of social goal inference.
In Advances in Neural Information Processing Systems, 2009. → pages 2

D. Verma and R. Rao. Planning and acting in uncertain environments
using probabilistic inference. In Proceedings of the International
Conference on Intelligent Robots and Systems, 2006. → pages 20

S. Vijayakumar, M. Toussaint, G. Petkos, and M. Howard. Planning and
moving in dynamic environments: A statistical machine learning
approach. In Creating Brain Like Intelligence: From Principles to
Complex Intelligent Systems. Springer, 2009. → pages 20

N. Vlassis and M. Toussaint. Model-free reinforcement learning as mixture
learning. In Proceedings of the International Conference on Machine
Learning, 2009. → pages 29, 30, 75, 171

M. Wainwright and M. Jordan. Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning,
1(1-2), 2008. → pages 56, 172

R. Williams. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine Learning, 8(3), 1992. →
pages 15

H. Zou and T. Hastie. Regularization and variable selection via the elastic
net. Journal of the Royal Statistical Society, Series B, 67(2), 2005. →
pages 97

186

Appendix A

Derivation of the Gaussian

backward-message

We will first consider a reward and transition model parameterized as fol-

lows:

r(z) = exp
[
− 1

2(ck + zTΩkz − 2zTµk)
]
,

f(zn|zn−1) = N (zn;Fzn−1,Σ).

In other words we are considering a single Gaussian reward. Extending

the following derivations to mixture-of-Gaussian rewards is as simple as

performing these updates for each component.

Next, we will assume that the backwards message at time n follows the

same parameterization as the reward model, i.e. one given by (cn, µn,Ωn).

Note that we will work directly with the standard time-indices for simplicity,

but it is also possible to frame this in terms of a time-to-go τ . For this model

we can recursively construct the β message at time n− 1 as

βn−1(zn−1)

=

∫
βn(zn) f(zn|zn−1) dzn

=

∫
exp

[
− 1

2(cn + zTnΩnzn − 2zTnµn)
]
· |2πΣ|−1/2

187

exp
[
− 1

2

(
zn − Fzn−1

)T
Σ−1

(
zn − Fzn−1

)]
dzn

=

∫
exp

[
− 1

2

{
cn + zTnΩnzn − 2zTnµn + log |2πΣ|+

zTnΣ−1zn +
(
Fzn−1

)T
Σ−1

(
Fzn−1

)
− 2zTnΣ−1Fzn−1

}]
dzn

= exp
[
− 1

2

{
cn + log |2πΣ|+

(
Fzn−1

)T
Σ−1

(
Fzn−1

)}]
∫

exp
[
− 1

2

{
zTnΩnzn − 2zTnµn + zTnΣ−1zn − 2zTnΣ−1Fzn−1

}]
dzn︸ ︷︷ ︸

(∗)

.

Here we have moved all the components not dependent on zn outside the

integral. The remaining terms inside the integral, marked with (∗), can then

be computed as

=

∫
exp

[
− 1

2

{
zTn (

Σ̃−1︷ ︸︸ ︷
Ωn + Σ−1)xn − 2zTn Σ̃−1

µ̃︷ ︸︸ ︷
Σ̃(µn + Σ−1Fzn−1)

+ µ̃T Σ̃−1µ̃− µ̃T Σ̃−1µ̃
}]

= exp
[
− 1

2

{
− µ̃T Σ̃−1µ

}]∫
exp

[
− 1

2

{(
zn − µ̃

)T
Σ̃−1

(
zn − µ̃

)}]
dzn

= exp
[
− 1

2

{
−
(
µn + Σ−1Fzn−1

)T
Σ̃Σ̃−1Σ̃

(
µn + Σ−1Fzn−1

)}]
· |2πΣ̃|1/2

= exp
[
− 1

2

{
log | 1

2π Σ̃−1| − µTn Σ̃µn −
(
Fzn−1

)T
Σ−1Σ̃Σ−1

(
Fzn−1

)
− 2(Fzn−1)TΣ−1Σ̃µn

}]
.

This result can then be incorporated back into the original equation, and

by expanding this term we arrive at

−2 log βn−1(zn−1) = cn + log |2πΣ|+ zTn−1F
TΣ−1Fzn−1 + log | 1

2π Σ̃−1|
− µTn Σ̃µn − zTn−1F

TΣ−1Σ̃Σ−1Fzn−1

− 2zTn−1F
TΣ−1Σ̃µn.

Grouping the terms that are constant, quadratic, and linear in zn−1 results

188

in

−2 log βn−1(zn−1) =
[
cn + log |ΣΣ̃−1| −

(
µn
)T

Σ̃
(
µn
)]

+
[
zTn−1F

T (Σ−1 − Σ−1Σ̃Σ−1)Fzn−1

]
−
[
2zTn−1F

TΣ−1(Σ̃µn)
]
.

Finally, by noting the earlier definition of

Σ̃−1 = Ωn + Σ−1,

we can write the following updates for the backward message:

cn−1 = cn + log |ΣΣ̃−1| − µTn Σ̃µn,

Ωn−1 = F T (Σ−1 − Σ−1Σ̃Σ−1)F,

µn−1 = F TΣ−1Σ̃µn.

189

	Abstract
	Preface
	Table of Contents
	List of Figures
	Acknowledgments
	1 Introduction
	1.1 Markov decision processes
	1.2 Solving the decision problem
	1.3 Outline of this work and contributions

	2 Maximum likelihood approaches to solving Markov Decision Processes
	2.1 Infinite mixtures of finite-horizon MDPs
	2.2 Maximum likelihood policy search via Expectation Maximization
	2.2.1 The E-step
	2.2.2 The M-step

	2.3 A mixture of Gaussians model
	2.4 Experiments
	2.4.1 Results on synthetic data
	2.4.2 Robotic applications

	2.5 An extension to semi-Markov Decision Processes
	2.5.1 The E-step
	2.5.2 Discrete models with Gamma-distributed time

	2.6 Chapter summary and conclusions

	3 Bayesian methods for solving Markov Decision Processes
	3.1 A Bayesian interpretation of the MDP problem
	3.2 Markov Chain Monte Carlo
	3.3 Reversible jump MCMC for Bayesian policy search
	3.3.1 Sampling trajectories using reversible jump MCMC
	3.3.2 Fixed-dimensional updates
	3.3.3 Preliminary experiments

	3.4 Improved inference strategies for reversible jump policy search
	3.4.1 Utilizing the entire reward sequence
	3.4.2 Explicit noise variables

	3.5 Marginal Optimization
	3.5.1 Annealing
	3.5.2 Clustering

	3.6 Experiments
	3.6.1 Linear-Gaussian models
	3.6.2 Particles with force-fields

	3.7 Chapter summary and conclusions

	4 Regularized Least Squares Temporal Difference learning with nested 2 and 1 penalization
	4.1 Preliminaries
	4.2 Regularized LSTD
	4.2.1 2 penalization (L2)
	4.2.2 1 penalization (L1)
	4.2.3 2 and 2 penalization (L22)
	4.2.4 2 and 1 penalization (L21)

	4.3 Standardizing the data
	4.4 Discussion of the different regularization schemes
	4.5 Experimental results
	4.6 Chapter summary and conclusions

	5 Multi-armed bandits
	5.1 The optimal Bayesian solution
	5.1.1 Modeling the bandit problem as an MDP
	5.1.2 Computing the Gittins index

	5.2 Alternative index policies and approximation guarantees
	5.2.1 UCB
	5.2.2 Bayesian Quantile-based UCB
	5.2.3 Bayesian UCB
	5.2.4 Thompson sampling

	5.3 Empirical results for cumulative regret
	5.4 Simple regret and pure exploration
	5.4.1 Best arm identification
	5.4.2 Racing
	5.4.3 A Bayesian approach

	5.5 Empirical results for simple regret
	5.6 Chapter summary and conclusions

	6 Bayesian optimization with acquisition portfolios
	6.1 Bayesian optimization
	6.1.1 Gaussian processes
	6.1.2 Acquisition functions

	6.2 Portfolio strategies
	6.2.1 Making decisions with expert advice
	6.2.2 Bayesian optimization with expert advice

	6.3 Experiments
	6.3.1 Standard test functions
	6.3.2 Sampled test functions
	6.3.3 Control of a particle simulation

	6.4 Convergence behavior
	6.4.1 Proof of Theorem 1

	6.5 Chapter summary and conclusions

	7 Conclusion
	Bibliography
	A Derivation of the Gaussian backward-message

